Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions
Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 108-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse extremum problems for stationary equations of magnetic hydrodynamics under mixed boundary conditions for velocity and electric and magnetic fields are considered. The solvability of the original boundary problem is proved, inverse extremum problems are formulated and existence of solutions of these problems is proved. Application of Lagrange principle is justified, optimality systems are obtained and analyzed both for arbitrary and for specific cost functionals.
@article{DVMG_2003_4_1_a11,
     author = {G. V. Alekseev and R. V. Brizitskii},
     title = {Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {108--126},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a11/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - R. V. Brizitskii
TI  - Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2003
SP  - 108
EP  - 126
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a11/
LA  - ru
ID  - DVMG_2003_4_1_a11
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A R. V. Brizitskii
%T Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2003
%P 108-126
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a11/
%G ru
%F DVMG_2003_4_1_a11
G. V. Alekseev; R. V. Brizitskii. Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 108-126. http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a11/

[1] G. V. Alekseev, Teoreticheskii analiz obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti, Preprint No 1 IPM DVO RAN, Dalnauka, Vladivostok, 2002, 78 pp.

[2] C. Conca, F. Murat and O. Pironneau, “The Stokes and Navier – Stokes equations with boundary conditions involving the pressure”, Japan. J. Math., 20 (1994), 196–210 | MR

[3] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya statsionarnykh uravnenii teplomassoperenosa, Preprint No 19 IPM DVO RAN, Dalnauka, Vladivostok, 2000, 60 pp.

[4] G. V. Alekseev and A. B. Smishliaev, “Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions”, J. Math. Fluid Mech., 3:1 (2001), 18–39 | DOI | MR | Zbl

[5] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, “Razreshimost kraevoi zadachi dlya statsionarnykh uravnenii teplomassoperenosa pri smeshannykh kraevykh usloviyakh”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 84–98 | MR

[6] O. A. Ladyzhenskaya, V. A. Solonnikov, “Reshenie nekotorykh nestatsionarnykh zadach magnitnoi gidrodinamiki dlya vyazkoi neszhimaemoi zhidkosti”, Trudy MIAN im. V. A. Steklova, 59, 1960, 115–173

[7] V. A. Solonnikov, “O nekotorykh statsionarnykh kraevykh zadachakh magnitnoi gidrodinamiki”, Trudy MIAN im. V. A. Steklova, 59, 1960, 174–187 | MR

[8] M. Sermange R. Temam, “Some mathematical questions related to the MHD equations”, Comm Pure. Appl. Math., 36 (1983), 635–664 | DOI | MR | Zbl

[9] S. V. Chizhonkov, “Ob odnoi sisteme uravnenii tipa magnitnoi gidrodinamiki”, Dokl. AN SSSR, 278:5 (1984), 1074–1077 | MR | Zbl

[10] M. D. Gunzburger, A. J. Meir J. S. Peterson, “On the existence, uniqueness and finite element approximation of solution of the equations of stationary, incompressible magnetohydrodynamics”, Math. Comp., 56:194 (1991), 523–563 | DOI | MR | Zbl

[11] V. N. Samokhin, “O statsionarnykh zadachakh magnitnoi gidrodinamiki nenyutonovskikh sred”, Sib. matem. zhurn., 33:4 (1992), 120–127 | MR

[12] A. J. Meir, “The equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions”, Comp. Math. Applic., 25 (1993), 13–29 | DOI | MR | Zbl

[13] M. Wiedmer, “Finite element approximation for equations of magnetohydrodynamics”, Math. Comp., 69:229 (1999), 83–101 | DOI | MR

[14] G. V. Alekseev, R. V. Brizitskii, “O razreshimosti smeshannoi kraevoi zadachi dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Vych. tekhn., 7:1, spets. vyp. (2002), 242–250

[15] G. V. Alekseev, R. V. Brizitskii, “Boundary value problem for stationary equations of viscous magnetohydrodybamic with mixed boundary conditions”, The VIII-th International Symposium on Integrated Application of Environmental and Information Technologies, Sbornik dokladov mezhdunarodnogo simpoziuma, Izd-vo Khabar. gos. tekhn. un-ta, Khabarovsk, 2002, 124–133 (English)

[16] G. V. Alekseev, R. V. Brizitskii, “Razreshimost smeshannoi zadachi dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Dalnevost. mat. zh., 3:2 (2002), 285–301 | MR

[17] G. V. Alekseev, “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl

[18] G. V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[19] G. V. Alekseev, “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394 | MR | Zbl

[20] A. Alonso and A. Valli, “Some remarks on the characterization of the space of tangential traces of $H(rot; \Omega)$ and the construction of the extension operator”, Manuscr. Math., 89 (1996), 159–178 | DOI | MR | Zbl

[21] A. Valli, Orthogonal decompositions of ${\mathbf L}^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, University of Toronto, Galamen, 1995

[22] V. Girault, P. A. Raviart, “Finite element methods for Navier – Stokes equations”, Theory and algorithms, Springer-Verlag, Berlin, 1986 | MR

[23] L. Hou, S. Ravindran, “Computations of boundary optimal control problems for an electrically conducting fluid”, J. Comp. Phys., 128 (1996), 319–330 | DOI | MR | Zbl

[24] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M. | MR