Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2003_4_1_a11, author = {G. V. Alekseev and R. V. Brizitskii}, title = {Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {108--126}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a11/} }
TY - JOUR AU - G. V. Alekseev AU - R. V. Brizitskii TI - Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2003 SP - 108 EP - 126 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a11/ LA - ru ID - DVMG_2003_4_1_a11 ER -
%0 Journal Article %A G. V. Alekseev %A R. V. Brizitskii %T Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions %J Dalʹnevostočnyj matematičeskij žurnal %D 2003 %P 108-126 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a11/ %G ru %F DVMG_2003_4_1_a11
G. V. Alekseev; R. V. Brizitskii. Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 108-126. http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a11/
[1] G. V. Alekseev, Teoreticheskii analiz obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti, Preprint No 1 IPM DVO RAN, Dalnauka, Vladivostok, 2002, 78 pp.
[2] C. Conca, F. Murat and O. Pironneau, “The Stokes and Navier – Stokes equations with boundary conditions involving the pressure”, Japan. J. Math., 20 (1994), 196–210 | MR
[3] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya statsionarnykh uravnenii teplomassoperenosa, Preprint No 19 IPM DVO RAN, Dalnauka, Vladivostok, 2000, 60 pp.
[4] G. V. Alekseev and A. B. Smishliaev, “Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions”, J. Math. Fluid Mech., 3:1 (2001), 18–39 | DOI | MR | Zbl
[5] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, “Razreshimost kraevoi zadachi dlya statsionarnykh uravnenii teplomassoperenosa pri smeshannykh kraevykh usloviyakh”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 84–98 | MR
[6] O. A. Ladyzhenskaya, V. A. Solonnikov, “Reshenie nekotorykh nestatsionarnykh zadach magnitnoi gidrodinamiki dlya vyazkoi neszhimaemoi zhidkosti”, Trudy MIAN im. V. A. Steklova, 59, 1960, 115–173
[7] V. A. Solonnikov, “O nekotorykh statsionarnykh kraevykh zadachakh magnitnoi gidrodinamiki”, Trudy MIAN im. V. A. Steklova, 59, 1960, 174–187 | MR
[8] M. Sermange R. Temam, “Some mathematical questions related to the MHD equations”, Comm Pure. Appl. Math., 36 (1983), 635–664 | DOI | MR | Zbl
[9] S. V. Chizhonkov, “Ob odnoi sisteme uravnenii tipa magnitnoi gidrodinamiki”, Dokl. AN SSSR, 278:5 (1984), 1074–1077 | MR | Zbl
[10] M. D. Gunzburger, A. J. Meir J. S. Peterson, “On the existence, uniqueness and finite element approximation of solution of the equations of stationary, incompressible magnetohydrodynamics”, Math. Comp., 56:194 (1991), 523–563 | DOI | MR | Zbl
[11] V. N. Samokhin, “O statsionarnykh zadachakh magnitnoi gidrodinamiki nenyutonovskikh sred”, Sib. matem. zhurn., 33:4 (1992), 120–127 | MR
[12] A. J. Meir, “The equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions”, Comp. Math. Applic., 25 (1993), 13–29 | DOI | MR | Zbl
[13] M. Wiedmer, “Finite element approximation for equations of magnetohydrodynamics”, Math. Comp., 69:229 (1999), 83–101 | DOI | MR
[14] G. V. Alekseev, R. V. Brizitskii, “O razreshimosti smeshannoi kraevoi zadachi dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Vych. tekhn., 7:1, spets. vyp. (2002), 242–250
[15] G. V. Alekseev, R. V. Brizitskii, “Boundary value problem for stationary equations of viscous magnetohydrodybamic with mixed boundary conditions”, The VIII-th International Symposium on Integrated Application of Environmental and Information Technologies, Sbornik dokladov mezhdunarodnogo simpoziuma, Izd-vo Khabar. gos. tekhn. un-ta, Khabarovsk, 2002, 124–133 (English)
[16] G. V. Alekseev, R. V. Brizitskii, “Razreshimost smeshannoi zadachi dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Dalnevost. mat. zh., 3:2 (2002), 285–301 | MR
[17] G. V. Alekseev, “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl
[18] G. V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl
[19] G. V. Alekseev, “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 380–394 | MR | Zbl
[20] A. Alonso and A. Valli, “Some remarks on the characterization of the space of tangential traces of $H(rot; \Omega)$ and the construction of the extension operator”, Manuscr. Math., 89 (1996), 159–178 | DOI | MR | Zbl
[21] A. Valli, Orthogonal decompositions of ${\mathbf L}^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, University of Toronto, Galamen, 1995
[22] V. Girault, P. A. Raviart, “Finite element methods for Navier – Stokes equations”, Theory and algorithms, Springer-Verlag, Berlin, 1986 | MR
[23] L. Hou, S. Ravindran, “Computations of boundary optimal control problems for an electrically conducting fluid”, J. Comp. Phys., 128 (1996), 319–330 | DOI | MR | Zbl
[24] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M. | MR