Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2003_4_1_a1, author = {V. K. Bulgakov and I. I. Potapov}, title = {The comparative analysis streamline finite-element schemes of the high order for a problem of the {Navier-Stokes} on the basis of modified {SUPG-method}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {5--17}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a1/} }
TY - JOUR AU - V. K. Bulgakov AU - I. I. Potapov TI - The comparative analysis streamline finite-element schemes of the high order for a problem of the Navier-Stokes on the basis of modified SUPG-method JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2003 SP - 5 EP - 17 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a1/ LA - ru ID - DVMG_2003_4_1_a1 ER -
%0 Journal Article %A V. K. Bulgakov %A I. I. Potapov %T The comparative analysis streamline finite-element schemes of the high order for a problem of the Navier-Stokes on the basis of modified SUPG-method %J Dalʹnevostočnyj matematičeskij žurnal %D 2003 %P 5-17 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a1/ %G ru %F DVMG_2003_4_1_a1
V. K. Bulgakov; I. I. Potapov. The comparative analysis streamline finite-element schemes of the high order for a problem of the Navier-Stokes on the basis of modified SUPG-method. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a1/
[1] K. Fletcher, Chislennye metody na osnove metoda Galerkina, Mir, M., 1988
[2] K. Fletcher, Vychislitelnye metody v dinamike zhidkostei, Mir, M., 1991
[3] P. D. Rouch, Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl
[4] S. Patankar, Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Mir, M., 1984
[5] J. W. Barrett, K. W. Morton, “Optimal finite element approximation for diffusion-convection problems”, Conf. on Math. of Finite Elements Trends and Appl. (Brunel Univ., May 1981)
[6] V. K. Bulgakov, K. A. Chekhonin, I. I. Potapov, “Optimal Coordination Coefficients Selection in Upwind Finite-Element Schemes”, The Fourth International Symposium on Advances in Science and Technology in the Far East (February 10–15, 1995, Harbin, China)
[7] D. F. Griffiths, A. R. Mitchell, “Finite elements for convection dominated flows”, AMD, 34 (1979), 91–104, New York | MR | Zbl
[8] O. C. Zeinkiewicz, The Finite Element Method, 2 ed., McGraw-Hill, London, 1977
[9] D. Anderson, Dzh. Tannekhill, R. Pletcher, Vychislitelnaya gidrodinamika i teploobmen, v 2 t., v. 2, Mir, M., 1990 | MR | Zbl
[10] C. Baiocchi, F. Brezzi, L. P. Franca, “Virtual bubbles and Galerkin-Least-squares method”, Comp. Methods Appl. Mech. Eng., 105 (1993), 125–141 | DOI | MR | Zbl
[11] T. J. R. Hughes, L. P. Franca, G. M. Hulbert, “A new finite element formulation for computational fluid dynamics: VIII. The Galerkin-least-squares method for advective-diffusive equations”, Comp. Methods Appl. Mech. Eng., 73 (1989), 173–189 | DOI | MR | Zbl
[12] F. Brezzi, M. O. Bristeau, L. P. Franca, M. Mallet, G. Roge, “A relationship between stabilized finite element methods and the Galerkin method with bubble functions”, Comp. Methods Appl. Mech. Eng., 96 (1992), 117–129 | DOI | MR | Zbl
[13] F. Brezzi, L. P. Franca, T. J. R. Hughes, A. Russo, “Stabilization techniques and subgrid scales capturing”, Comp. Methods Appl. Mech. Eng., 145 (1997), 329–339 | DOI | MR | Zbl
[14] A. N. Brooks, T. J. R. Hughes, “Streamline upwind Retrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier – Stokes equations”, Comp. Methods Appl. Mech. Eng., 32 (1982), 199–259 | DOI | MR | Zbl
[15] L. P. Franca, S. L. Frey, T. J. R. Hughes, “Stabilized finite element methods: I. Application to the advective-diffusive model”, Comp. Methods Appl. Mech. Eng., 95 (1992), 253–276 | DOI | MR | Zbl
[16] Metod konechnykh elementov v mekhanike tverdykh tel, ed. A. S. Sakharov, I. Altenbakh, “Vischa shkola”, Kiev, 1982 | MR
[17] L. P. Franca, L. Michel, F. Charbel, “Unusual stabilized finite element methods for second order linear differential equations”, Proceedings of the Nintn International Conference on Finite Elements in Fluids - New Trends and Applications (Venezia, Italy, 15th–21st October, 1995)
[18] G. Streng, Dzh. Fiks, Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR
[19] F. Brezzi, D. Marini, A. Russo, “Application of the Pseudo-Free Bubbles to the Stabilization of Convection-Diffusion Problems”, Comp. Methods Appl. Mech. Eng., 166 (1998), 51–64 | DOI | MR
[20] V. T. Zhukov, L. G. Strakhovskaya, R. P. Fedorenko, O. B. Fedoritova, “Ob odnom napravlenii v konstruirovanii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 42:2 (2002), 222–234 | MR | Zbl
[21] L. P. Franca, R. L. Muller, “Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive form of the Stokes and incompressible Navier – Stokes equations”, Comp. Methods Appl. Mech. Eng., 105 (1993), 285–298 | DOI | MR | Zbl
[22] V. K. Bulgakov, I. I. Potapov, Metod konechnykh elementov v zadachakh gidrodinamiki, KhGTU, Khabarovsk, 1999
[23] D. Dzhozef, Ustoichivost dvizhenii zhidkosti, Mir, M., 1981
[24] Stefan Turek, Multilevel Pressure Schur Complement techniques for the numerical solution of the incompressible Navier – Stokes equations, Univ. Heidelberg, 1998
[25] V. V. Shaidurov, Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR
[26] V. K. Bulgakov, I. I. Potapov, “Sravnitelnyi analiz konechno-elementnykh approksimatsii vtorogo poryadka dlya zadachi Stoksa”, Zh. vychisl. matem. i matem. fiz., 42:11 (2002), 1756–1761 | MR
[27] S. Pissanetski, Tekhnologiya razrezhennykh matrits, Mir, M., 1988 | MR
[28] Dzh. Ortega, Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR