Method of particles and its application to mechanics of solids
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 254-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basics of the particles dynamic method are presented as well as applications of this method to mechanics of solids. Different potentials of interaction are described. The parameters characterizing the laws of interaction are outlined. The main principles for setting correspondence between the microparameters of the simulation and the macroparameters of the object being modeled are described.
@article{DVMG_2002_3_2_a9,
     author = {A. M. Krivtsov and N. V. Krivtsova},
     title = {Method of particles and its application to mechanics of solids},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {254--276},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a9/}
}
TY  - JOUR
AU  - A. M. Krivtsov
AU  - N. V. Krivtsova
TI  - Method of particles and its application to mechanics of solids
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 254
EP  - 276
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a9/
LA  - ru
ID  - DVMG_2002_3_2_a9
ER  - 
%0 Journal Article
%A A. M. Krivtsov
%A N. V. Krivtsova
%T Method of particles and its application to mechanics of solids
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 254-276
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a9/
%G ru
%F DVMG_2002_3_2_a9
A. M. Krivtsov; N. V. Krivtsova. Method of particles and its application to mechanics of solids. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 254-276. http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a9/

[1] M. P. Allen and A. K. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987 | Zbl

[2] W. G. Hoover, “Isomorphism linking smooth particles and embedded atoms”, Physica A, 260:3-4 (1998), 44–254 | DOI

[3] A. V. Zabrodin, “Super EVM MVS-100, MVS-1000 i opyt ikh ispolzovaniya pri reshenii zadach mekhaniki i fiziki”, Matematicheskoe modelirovanie, 12:5 (2000), 61–66

[4] S. Nose, “Constant-Temperature Molecular-Dynamics”, Journal of Physics – Condensed Matter, 2 (1990), 115–119 | DOI

[5] L. Verlet, “Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., 159 (1967), 98–103 | DOI

[6] J. B. Gibson, A. N. Goland, M. Milgram and G. H. Vineyard, Phys. Rev., 120 (1960), 1229 | DOI

[7] A. Nordsieck, Math. Comput., 16 (1962), 22 | DOI | MR | Zbl

[8] S. Erkoc, “Empirical many-body potential energy functions used in computer simulations of condensed matter properties”, Physics Reports, 278:2 (1997), 80–105 | DOI

[9] A. M. Krivtsov, “Second Order Equation of State for Lennard-Jones Chain”, Proceedings of the XXVIII Summer School Actual Problems in Mechanics, 1, St.-Petersburg. Russia, 2001, 79–90

[10] N. J. Wagner, B. L. Holian, A. F. Voter, “Molecular-Dynamics Simulations of 2-Dimensional Materials at High-Strain Rates”, Physical Review A, 45:12 (1992), 8457–8470 | DOI

[11] V. A. Lagunov, A. B. Sinani, “Obrazovanie bistruktury tverdogo tela v kompyuternom eksperimente”, Fizika tverdogo tela, 40:10 (1998), 1919–1924

[12] A. M. Krivtsov, “K teorii sred s mikrostrukturoi”, Tr. SPbGTU, 443, 1992, 9–17

[13] A. M. Krivtsov, “Constitutive Equations of the Nonlinear Crystal Lattice”, ZAMM, 79:2 (1999), 419–420

[14] U. Vuster, Primenenie tenzorov i teorii grupp dlya opisaniya fizicheskikh svoistv kristallov, Mir, M., 1977 | MR