Uniqueness of the decision of boundary problems and stability for heterogeneously resistant material
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 242-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniqueness theorem is proved and necessary, sufficient conditions feasibility of postulate stability in small and large are given for a heterogeneously elastic material model for geonetrically linear statment of boundary problem of the elasticity theory based on exact solution inequalities of local convexity elasic potential and stability. It is analised the conditions of uniqueness and stability for a special case: a loose material model and its geometric interpretation is given.
@article{DVMG_2002_3_2_a8,
     author = {A. I. Oleinikov and E. V. Mogil'nikov},
     title = {Uniqueness of the decision of boundary problems and stability for heterogeneously resistant material},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {242--253},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a8/}
}
TY  - JOUR
AU  - A. I. Oleinikov
AU  - E. V. Mogil'nikov
TI  - Uniqueness of the decision of boundary problems and stability for heterogeneously resistant material
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 242
EP  - 253
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a8/
LA  - ru
ID  - DVMG_2002_3_2_a8
ER  - 
%0 Journal Article
%A A. I. Oleinikov
%A E. V. Mogil'nikov
%T Uniqueness of the decision of boundary problems and stability for heterogeneously resistant material
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 242-253
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a8/
%G ru
%F DVMG_2002_3_2_a8
A. I. Oleinikov; E. V. Mogil'nikov. Uniqueness of the decision of boundary problems and stability for heterogeneously resistant material. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 242-253. http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a8/

[1] A. V. Berezin, Vliyanie povrezhdenii na deformatsionnye i prochnostnye kharakteristiki tverdykh tel, Nauka, M., 1990, 135 pp.

[2] E. V. Lomakin, “O edinstvennosti resheniya zadach teorii uprugosti dlya izotropnogo raznomodulnogo tela”, Izv. AN SSSR. MTT, 1979, no. 2, 42–45 | MR

[3] V. P. Maslov, P. P. Mosolov, Teoriya uprugosti dlya raznomodulnoi sredy, Nauka, M., 1985, 100 pp.

[4] A. I. Oleinikov, E. V. Mogilnikov, “O edinstvennosti resheniya zadach i ustoichivosti materiala nelineinoi geterogennoi uprugosti”, DAN. RAN, 378:2 (2001), 194–196 | MR

[5] V. P. Myasnikov, A. I. Oleinikov, “Osnovnye obschie sootnosheniya modeli izotropno-uprugoi raznosoprotivlyayuscheisya sredy”, DAN SSSR, 322:1 (1992), 57–60 | Zbl

[6] A. I. Oleinikov, “Osnovnye obschie sootnosheniya modeli izotropno-uprugoi raznomodulnoi sredy”, Prikladnaya matematika i mekhanika, 57:5 (1993), 153–159 | MR

[7] V. M. Sadovskii, Razryvnye resheniya v zadachakh dinamiki uprugoplasticheskikh sred, Nauka, M.; Fizmatlit, 1997, 208 pp. | MR

[8] A. I. Oleinikov, “O rasprostranenii voln malykh vozmuschenii v raznomodulnykh staticheski napryazhennykh sredakh. Ploskie volny”, FTPRPI, 1989, no. 3, 39–48

[9] R. Drukker, “O postulate ustoichivosti materiala v mekhanike sploshnoi sredy”, Mekhanika, Period. sb. per. inostr. st., no. 3, 1964, 115–128

[10] R. Drukker, “Opredelenie ustoichivogo neuprugogo materiala”, Mekhanika, Period. sb. per. inostr. st., no. 2, 1960, 55–70

[11] Yu. N. Rabotnov, Polzuchest elementov konstruktsii, Nauka, M., 1966, 752 pp. | Zbl

[12] B. S. Tursunov, “O svoistvakh potentsiala napryazhenii uprugikh tel”, PMM, 34 (1970), 75–83 | Zbl

[13] I. Yu. Tsvelodub, Dinamika sploshnoi sredy, 32 (1977), 123–131

[14] I. Yu. Tsvelodub, Postulat ustoichivosti i ego prilozheniya v teorii polzuchesti metallicheskikh materialov, NGU, Novosibirsk, 1991, 200 pp.

[15] A. I. Oleinikov, “O modeli raznomodulnoi sredy s ogranicheniyami”, DAN, 334:3 (1994), 314–316 | MR | Zbl