Structure of self-balanced stresses stresses in continuum
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 231-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the presentation of the self - balanced stresses can be obtained on the foundation of the variational principle.
@article{DVMG_2002_3_2_a7,
     author = {V. P. Myasnikov and M. A. Guzev and A. A. Ushakov},
     title = {Structure of self-balanced stresses stresses in continuum},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a7/}
}
TY  - JOUR
AU  - V. P. Myasnikov
AU  - M. A. Guzev
AU  - A. A. Ushakov
TI  - Structure of self-balanced stresses stresses in continuum
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 231
EP  - 241
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a7/
LA  - ru
ID  - DVMG_2002_3_2_a7
ER  - 
%0 Journal Article
%A V. P. Myasnikov
%A M. A. Guzev
%A A. A. Ushakov
%T Structure of self-balanced stresses stresses in continuum
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 231-241
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a7/
%G ru
%F DVMG_2002_3_2_a7
V. P. Myasnikov; M. A. Guzev; A. A. Ushakov. Structure of self-balanced stresses stresses in continuum. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a7/

[1] G. N. Chernyshev, A. L. Popov, V. M. Kozintsev, I. I. Ponomarev, Ostatochnye napryazheniya v deformiruemykh tverdykh telakh, Nauka, M., 1996, 240 pp.

[2] L. D. Landau, E. M. Livshits, Teoriya uprugosti, Nauka, M., 1987, 248 pp. | MR | Zbl

[3] K. Kondo, “On the geometrical and physical foundations of the theory of yielding”, Proc. 2nd Japan Nat. Congr. Appl. Mech., Tokyo, 1953, 41–47 | MR

[4] B. A. Bilby, R. Bullough, E. Smith, “Continuos distributions of dislocations: a new application of the methods of non-Reimannian geometry”, Proc. Roy. Soc. A, 231 (1955), 263 –273 | MR

[5] I. P. Myasnikov, M. A. Guzev, “Geometricheskaya model vnutrennikh samouravnoveshennykh napryazhenii v tverdykh telakh”, Doklady akademii nauk, 38:5 (2001), 627–629

[6] S. K. Godunov , E.I. Romenskii, Elementy mekhaniki sploshnoi sredy, Nauchnaya kniga, Novosibirsk, 1998, 268 pp.

[7] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986, 760 pp. | MR

[8] V. L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 448 pp. | MR

[9] L. D. Landau, E. M. Livshits, Teoriya polya, Nauka, M., 1988, 512 pp. | MR