Connection between stochastic control of Markov process parameter and transportation problem
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 216-226
Cet article a éte moissonné depuis la source Math-Net.Ru
Consider a functioning of discrete Markov process in random environment. That is the process behavior is defined by some randomly varying parameter. Suppose that stationary distributions of the process under fixed meanings of the parameter are known. A problem is to choose a control of parameter ramdom variation so that the stationary distribution of obtained process equals to probability mixture of stationary distributions of this process under fixed parameter meanings. An algorytm which put a mutually synonymous accordance between a set of all stochastic controls and a set of all accessible solutions of some transportation problem and an interior of some multidimensional cube is constructed.
@article{DVMG_2002_3_2_a5,
author = {G. Sh. Tsitsiashvili},
title = {Connection between stochastic control of {Markov} process parameter and transportation problem},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {216--226},
year = {2002},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a5/}
}
TY - JOUR AU - G. Sh. Tsitsiashvili TI - Connection between stochastic control of Markov process parameter and transportation problem JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2002 SP - 216 EP - 226 VL - 3 IS - 2 UR - http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a5/ LA - ru ID - DVMG_2002_3_2_a5 ER -
G. Sh. Tsitsiashvili. Connection between stochastic control of Markov process parameter and transportation problem. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 216-226. http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a5/
[1] F. P. Kelly, Reversibility and Stochastic Networks, John Wiley and Sons, 1979 | MR | Zbl
[2] Y. Zhu, “Markovian Queueing Networks in Random Environment”, Operations Research Letters, 15 (1994), 11–17 | DOI | MR | Zbl
[3] D. Baum and G. Sh. Tsitsiashvili, “On Product Connection Theorems for Markov Chains”, International Journal on Pure and Applied Mathematics, 1:2 (2002), 167–197 | MR
[4] G. Sh. Tsitsiashvili, M. A. Osipova, “Stokhasticheskoe upravlenie parametrom diskretnogo markovskogo protsessa”, Dalnevost. matem. zhurn., 3:1 (2002), 58–60
[5] R. Gabasov, F. M. Kirillova, Metody lineinogo programmirovaniya, v. 2, izd-vo BGU, Minsk, 1978, 239 pp. | MR | Zbl