@article{DVMG_2002_3_2_a3,
author = {I. M. Novitskii},
title = {Fredholm formulae for kernels which are linear with respect to parameter},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {173--194},
year = {2002},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a3/}
}
I. M. Novitskii. Fredholm formulae for kernels which are linear with respect to parameter. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 173-194. http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a3/
[1] Anthony F. Ruston, Fredholm theory in Banach spaces, Cambridge Univ. Press, Cambridge e.a., 1986 | MR
[2] I. Fredholm, “Sur une classe d'équations fonctionnelles”, Acta math., 27 (1903), 365–390 | DOI | MR | Zbl
[3] I. Fredholm, Letter to G. Mittag–Leffler. August 8, 1899, Uvres Complètes de Ivar Fredholm, Litos Reprotryck, Malmö, 1955
[4] I. M. Novitskii, “O minorakh Fredgolma dlya vpolne nepreryvnykh operatorov”, Dalnevostochnyi matematicheskii sbornik, 7, 1999, 103–122
[5] I. M. Novitskii, “Privedenie lineinykh operatorov v $L_2$ k integralnomu vidu s gladkimi yadrami”, Dokl. AN SSSR, 318:5 (1991), 1088–1091 | MR
[6] I. M. Novitskii, Simultaneous unitary equivalence of operators families to integral operators with smooth kernels and its applications, Preprint instituta prikladnoi matematiki, DVO AN SSSR, Vladivostok, 1990, 29 pp.
[7] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl
[8] I. M. Novitskiĭ\, “Integral representations of linear operators by smooth Carleman kernels of Mercer type”, Proc. London Math. Soc. III ser., 68:1 (1994), 161–177 | MR | Zbl
[9] M. Markus, Ch. Mink, Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR