Solvability of the mixed problem for stationary equations of magnetic hydrodynamics of viscous fluid
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 285-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value problems for the stationary equations of magnetic hydrodynamics under non-standard boundary conditions for velocity and magnetic field. The global solvability of this problem is studied. The sufficient conditions of uniqueness of the solution are established.
@article{DVMG_2002_3_2_a11,
     author = {G. V. Alekseev and R. V. Brizitskii},
     title = {Solvability of the mixed problem for stationary equations of magnetic hydrodynamics of viscous fluid},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {285--301},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a11/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - R. V. Brizitskii
TI  - Solvability of the mixed problem for stationary equations of magnetic hydrodynamics of viscous fluid
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 285
EP  - 301
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a11/
LA  - ru
ID  - DVMG_2002_3_2_a11
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A R. V. Brizitskii
%T Solvability of the mixed problem for stationary equations of magnetic hydrodynamics of viscous fluid
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 285-301
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a11/
%G ru
%F DVMG_2002_3_2_a11
G. V. Alekseev; R. V. Brizitskii. Solvability of the mixed problem for stationary equations of magnetic hydrodynamics of viscous fluid. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 285-301. http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a11/

[1] A. G. Kulikovskii, G. A. Lyubimov, Magnitnaya gidrodinamika, Fizmatgiz, M., 1962, 248 pp.

[2] Dzh. Sherklif, Kurs magnitnoi gidrodinamiki, Mir, M., 1967, 320 pp.

[3] C. Conca, F. Murat and O. Pironneau, “The Stokes and Navier – Stokes equations with boundary conditions involving the pressure”, Japan. J. Math., 20 (1994), 196–210 | MR

[4] G. V. Alekseev and A. B. Smishliaev, “Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions”, J. Math. Fluid Mech., 3:1 (2001), 18–39 | DOI | MR | Zbl

[5] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, Neodnorodnye kraevye zadachi dlya statsionarnykh uravnenii teplomassoperenosa, Preprint No 19 IPM DVO RAN, Dalnauka, Vladivostok, 2000, 60 pp.

[6] O. A. Ladyzhenskaya, V. A. Solonnikov, “Reshenie nekotorykh nestatsionarnykh zadach magnitnoi gidrodinamiki dlya vyazkoi neszhimaemoi zhidkosti”, Matematicheskie voprosy gidrodinamiki i magnitnoi gidrodinamiki dlya vyazkoi neszhimaemoi zhidkosti, Trudy MIAN, 59, 1960, 115–173

[7] V. A.Solonnikov, “O nekotorykh statsionarnykh kraevykh zadachakh magnitnoi gidrodinamiki”, Matematicheskie voprosy gidrodinamiki i magnitnoi gidrodinamiki dlya vyazkoi neszhimaemoi zhidkosti, Trudy matematicheskogo instituta imeni V. A. Steklova, 59, 1960, 174–187 | MR

[8] R. H. Dyer D. E. Edmunds, “A uniqueness theorem in magnetohydrodynamics”, Arch. Rat. Mech. Anal., 8 (1961), 254–262 | DOI | MR | Zbl

[9] G. Duvaut J.-L. Lions, “Inéquations en thermoélasticité et magnétohydrodynamique”, Arch Rat. Mech. Anal., 46 (1972), 241–279 | DOI | MR | Zbl

[10] G. V. Alekseev, “O razreshimosti odnorodnoi nachalno-kraevoi zadachi dlya uravnenii magnitnoi gidrodinamiki idealnoi zhidkosti”, Dinamika sploshnoi sredy, 57, Izd-vo IG SO RAN, Novosibirsk, 1982, 3–20 | MR

[11] M. Sermange R. Temam, “Some mathematical questions related to the MHD equations”, Comm Pure. Appl. Math., 36 (1983), 635–664 | DOI | MR | Zbl

[12] S. V. Chizhonkov, “Ob odnoi sisteme uravnenii tipa magnitnoi gidrodinamiki”, Dokl. AN SSSR, 278:5 (1984), 1074–1077 | MR | Zbl

[13] M. D. Gunzburger, A. J. Meir J. S. Peterson, “On the existence, uniqueness and finite element approximation of solution of the equations of stationary, incompressible magnetohydrodynamics”, Math. Comp., 56:194 (1991), 523–563 | DOI | MR | Zbl

[14] V. N. Samokhin, “O statsionarnykh zadachakh magnitnoi gidrodinamiki nenyutonovskikh sred”, Sib. matem. zhurn., 33:4 (1992), 120–127 | MR

[15] A. J. Meir, “The equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions”, Comp. Math. Applic., 25 (1993), 13–29 | DOI | MR | Zbl

[16] A. J. Meir P. G. Schmidt, “A velocity-current formulation for stationary MHD flow”, Appl. Math. Comp., 65 (1994), 95–109 | DOI | MR | Zbl

[17] G. Milone, V. A. Solonnikov, “On an initial boundary-value problem for equations of magnetohydrodynamics with Hall and ion-sleep effect”, Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steclov. (POMI), 221, 1995, 167–184

[18] G. Milone, V. A. Solonnikov, “On the solvability of some initial boundary-value problems of magnetofluidmechanics with Hall and ion-sleep effects”, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Mat. Natur., 6 (1995), 117–132 | MR

[19] A. J. Meir, “Variational methods for stationary MHD flow under natural interface conditions”, Nonlinear Analysis, 26:4 (1996), 659–689 | DOI | MR | Zbl

[20] A. J. Meir, Paul G. Schmidt, “Analysis and numerical approximation of a stationery MHD flow problem with nonideal boundary”, SIAM J. Numer. Anal., 36:4 (2000), 1304–1332 | DOI | MR

[21] M. Wiedmer, “Finite element approximation for equations of magnetohydrodynamics”, Math. Comp., 69:229 (1999), 83–101 | DOI | MR

[22] G./,V. Alekseev, “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Doklady RAN, 375:3 (2000), 315–319 | MR

[23] G. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inv. Ill-Posed Problems, 9:5 (2001), 435–468 | MR | Zbl

[24] G./,V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. matem. zhurnal, 42:5 (2001), 971–991 | MR | Zbl

[25] G. V. Alekseev, E. A. Adomavichyus, “O razreshimosti neodnorodnykh kraevykh zadach dlya statsionarnykh uravnenii massoperenosa”, Dalnevostochnyi matem. zhurnal, 2:2 (2001), 138–153

[26] G. V. Alekseev, “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zh. vychisl. matem. matem. fiz., 42:3 (2002), 380–394 | MR | Zbl

[27] V. Girault, P. A. Raviart, “Finite element methods for Navier – Stokes equations”, Theory and algorithms, Springer-Verlag, Berlin, 1986 | MR | Zbl

[28] A. Valli, Orthogonal decompositions of $L^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, Galamen, University of Toronto, 1995

[29] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, v. 1, Physical Origins and Classical Methods, Springer-Verlag, Berlin – Heidelberg, 1988, 720 pp. | Zbl

[30] M. P. Galanin, Yu. P. Popov, Kvazistatsionarnye elektromagnitnye polya v neodnorodnykh sredakh (matematicheskoe modelirovanie), Nauka, Fizmatlit, M., 1995, 300 pp. | MR | Zbl

[31] G. V. Alekseev, Teoreticheskii analiz obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti, Preprint No 1 IPM DVO RAN, Dalnauka, Vladivostok, 2002, 60 pp.