The generalized reduced modulus
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 150-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary reduced moduli of the digons and triangles are the essential part of the extremal metric method. They have many applications in the geometric theory of functions of a complex variable. In the present paper, we use the capacity approach to extend these concepts to the concepts of the boundary reduced modulus of the polygons, with any number of vertexs. Moreover, we connect the concept of the boundary reduced modulus with the inner reduced modulus. The correctness of the definition of the generalized reduced modulus is proved. We consider the special cases of reduced modulus, the behavior of the reduced modulus under the extension of the sets and under the conformal mappings of the sets. The principle of the symmetry and the formulae for some reduced moduli are obtained. We prove the new composition principles for the generalized reduced moduli. These principles generalize some theorems about the separating transformation and about the extremal partitioning of the domains.
@article{DVMG_2002_3_2_a1,
     author = {V. N. Dubinin and N. V. Eyrikh},
     title = {The generalized reduced modulus},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {150--164},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a1/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - N. V. Eyrikh
TI  - The generalized reduced modulus
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 150
EP  - 164
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a1/
LA  - ru
ID  - DVMG_2002_3_2_a1
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A N. V. Eyrikh
%T The generalized reduced modulus
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 150-164
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a1/
%G ru
%F DVMG_2002_3_2_a1
V. N. Dubinin; N. V. Eyrikh. The generalized reduced modulus. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 150-164. http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a1/

[1] L. V. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta Math., 83:1-2 (1950), 101–129 | MR | Zbl

[2] V. K. Kheiman, Mnogolistnye funktsii, Izd-vo inostr. lit., M., 1960 | MR

[3] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, Izd-vo inostr. lit., M., 1962

[4] A. Pfluger, “Extremallängen und Kapazität”, Comment. Math. Helv., 29 (1955), 120–131 | DOI | MR | Zbl

[5] H. Wittich, “Zur Konformen Abbildung schlichter Gebiete”, Math. Nachr., 16 (1958), 226–234 | MR

[6] I.P. Mityuk, “Obobschennyi privedennyi modul i nekotorye ego primeneniya”, Izv. vuzov. Matematika, 1964, no. 2, 110–119 | Zbl

[7] V. M. Miklyukov, “O nekotorykh granichnykh zadachakh teorii konformnykh otobrazhenii”, Sib. matem. zhurn., 18:5 (1977), 1111–1124 | MR | Zbl

[8] G. V. Kuzmina, Moduli semeistv krivykh i kvadratichnye differentsialy, Tr. Mat. in-ta im. V. A. Steklova, 139, Leningrad, 1980 | MR

[9] G. V. Kuzmina, “Ob ekstremalnykh svoistvakh kvadratichnykh differentsialov s polosoobraznymi oblastyami v strukture traektorii”, Zap. nauch. semin. LOMI, 154, 1986, 110–129 | MR

[10] E. G. Emelyanov, “K zadacham ob ekstremalnom razbienii”, Zap. nauch. semin. LOMI, 154, 1986, 76–89 | MR

[11] E. G. Emelyanov, “O svyazi dvukh zadach ob ekstremalnom razbienii”, Zap. nauch. semin. LOMI, 160, 1987, 91–98 | MR

[12] G. V. Kuzmina, “K voprosu ob ekstremalnykh svoistvakh kvadratichnykh differentsialov s kontsevymi oblastyami v strukture traektorii”, Zap. nauch. semin. LOMI, 168, 1988, 98–113 | MR

[13] V. N. Dubinin, “Razdelyayuschee preobrazovanie oblastei i zadachi ob ekstremalnom razbienii”, Zap. nauchn. semin. LOMI, 168, 1988, 48–66 | Zbl

[14] A. Yu. Solynin, “Reshenie odnoi izoperimetricheskoi zadachi Polia–Sege”, Zap. nauchn. semin. LOMI, 168, 1988, 140–153 | Zbl

[15] A. Baernstein II, “A counterexample concerning integrability of derivatives of conformal mappings”, J. Anal. Math., 53 (1989), 253–268 | DOI | MR | Zbl

[16] D. Gaier, W. Hayman, “On the computation of modules of long quadrilaterals”, Constr. Approx., 7 (1991), 453–467 | DOI | MR | Zbl

[17] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, New York, 1992 | MR | Zbl

[18] L. Carleson, N. G. Makarov, “Some results connected with Brennan's conjecture”, Ark. Mat., 32:1 (1994), 33–62 | DOI | MR | Zbl

[19] V. N. Dubinin, “Nekotorye svoistva vnutrennego privedennogo modulya”, Sib. matem. zhurn., 35:4 (1994), 774–792 | MR | Zbl

[20] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, 49:1 (1994), 3–76 | MR | Zbl

[21] V. N. Dubinin, “Simmetrizatsiya, funktsiya Grina i konformnye otobrazheniya”, Zap. nauchn. semin. POMI, 226, 1996, 80–92 | MR | Zbl

[22] E. G. Emelyanov, G. V. Kuzmina, “Teoremy ob ekstremalnom razbienii v semeistvakh sistem oblastei razlichnykh tipov”, Zap. nauchn. semin. POMI, 237, 1997, 74–104 | MR

[23] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii I, II”, Algebra i analiz, 9:3 (1997), 41–103 ; 5, 1–50 | MR | Zbl | MR | Zbl

[24] V. N. Dubinin, “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Zap. nauchn. semin. POMI, 237, 1997, 56–73 | MR | Zbl

[25] V. N. Dubinin, “Privedennye moduli otkrytykh mnozhestv v teorii analiticheskikh funktsii”, Dokl. RAN, 363:6 (1998), 731–734 | MR | Zbl

[26] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Zap. nauchn. semin. POMI, 254, 1998, 76–94 | MR

[27] V. N. Dubinin, E. G. Prilepkina, “Ob ekstremalnom razbienii prostranstvennykh oblastei”, Zap. nauchn. semin. POMI, 254, 1998, 95–107 | MR

[28] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[29] V. N. Dubinin, “Printsip mazhoratsii dlya $p$-listnykh funktsii”, Matem. zametki, 65:4 (1999), 33–541 | MR

[30] G. V. Kuzmina, “K zadacham ob ekstremalnom razbienii v semeistvakh sistem oblastei obschego vida”, Zap. nauch. semin. POMI, 263, 2000, 157–186 | MR

[31] N. V. Eirikh, “Privedennye moduli $n$-ugolnikov”, Dalnevostochnaya matem. shkola-seminar im. akademika E. V. Zolotova, Tez. Dokl., Dalnauka, Vladivostok, 2000, 116–117

[32] J. Hersch, “On the reflection principle and some elementary ratios of conformal radii”, J. Anal. Math., 44 (1984/85), 251–268 | DOI | MR

[33] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[34] V. N. Dubinin, “Metod simmetrizatsii i transfinitnyi diametr”, Sib. matem. zhurn., 27:2 (1986), 39–46 | MR | Zbl