Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2002_3_2_a0, author = {V. N. Dubinin and E. G. Prilepkina}, title = {On the uniqueness theorems for the transformations of sets and condensers in the plane}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {137--149}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a0/} }
TY - JOUR AU - V. N. Dubinin AU - E. G. Prilepkina TI - On the uniqueness theorems for the transformations of sets and condensers in the plane JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2002 SP - 137 EP - 149 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a0/ LA - ru ID - DVMG_2002_3_2_a0 ER -
%0 Journal Article %A V. N. Dubinin %A E. G. Prilepkina %T On the uniqueness theorems for the transformations of sets and condensers in the plane %J Dalʹnevostočnyj matematičeskij žurnal %D 2002 %P 137-149 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a0/ %G ru %F DVMG_2002_3_2_a0
V. N. Dubinin; E. G. Prilepkina. On the uniqueness theorems for the transformations of sets and condensers in the plane. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 137-149. http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a0/
[1] V. N. Dubinin, “Capacities and geometric transformations of subsets in $n$-space”, Geometric and Functional Analysis, 3:4 (1993), 342–369 | DOI | MR | Zbl
[2] A. II Baernstein, “A unified approach to symmetrization”, Partial differential equations of elliptic type, Proceedings of the conference (Cortona, 1992), Cambridge Univ. Press, 1994, 77–91 | MR
[3] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matematicheskikh nauk, 49:1 (1994), 3–76 | MR | Zbl
[4] J. A. Jenkins, “Some uniqueness rezults in the theory of symmetrization”, Ann. math., 75:2 (1962), 223–230 | DOI | MR | Zbl
[5] V. K. Kheiman, Mnogolistnye funktsii, In. lit., M., 1960 | MR
[6] M. Ohtsuka, Dirichlet problem, extremal length and prime ends, New-York, 1970 | Zbl
[7] I. P. Mityuk, “Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii”, Vvedenie v simmetrizatsionnye metody, Kubanskii gosuniversitet, Krasnodar, 1980
[8] V. A. Shlyk, “O teoreme edinstvennosti dlya simmetrizatsii proizvolnykh kondensatorov”, Sib. matem. zhurnal, 1982, no. 2, 165–175 | MR | Zbl
[9] I. P. Mityuk, “Teorema edinosti pri simmetrizatsii $S_\theta^{(1)}$”, Dop. AN URSR, 1970, no. 9, 778–779 | Zbl
[10] I. P. Mityuk, V. A. Shlyk, “O spiralno-usrednyayuschei simmetrizatsii i nekotorykh ee primeneniyakh”, Izv. Severo-Kavkazskogo nauch. tsentra vyssh. shkoly, 1973, no. 4, 61–64
[11] I. P. Mityuk, “Teoremy edinstvennosti pri simmetrizatsii oblastei i kondensatorov”, Nekotor. vopr. sovrem. teorii funktsii, Novosibirsk, 1976, 101–108
[12] A. Baernstein, “Integral means, univalent functions and circular symmetrization”, Acta Math., 133:3-4 (1974), 139–169 | DOI | MR
[13] A. Yu. Solynin, “Polyarizatsiya i funktsionalnye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185 | MR | Zbl
[14] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[15] T. Ransford, Potential theory in the complex plane, Cambridge Univ. Press., 1995 | MR | Zbl
[16] E. G. Akhmedzyanova, Teorema edinstvennosti dlya radialnogo preobrazovaniya zamknutykh mnozhestv, Preprint No 4 IPM DVO RAN., 1998
[17] L. V. Kovalev, “Monotonnost obobschennogo privedennogo modulya”, Zap.nauchn. semin. POMI, 276, 2001, 219–236 | MR | Zbl
[18] E. G. Akhmedzyanova, V. N. Dubinin, “Radialnye preobrazovaniya mnozhestv i neravenstva dlya transfinitnogo diametra”, Izvestiya vuzov. Matematika, 1999, no. 4, 3–8 | MR | Zbl