On the uniqueness theorems for the transformations of sets and condensers in the plane
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 137-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

The contraction transformation of the compact sets and the separating transformation of the sets and the condensers in the extended complex plane are considered. The first transformation is well-known in the theory of functions and in the potential theory. The second transformation was introduced by the first-named author and it has many applications in the geometric theory of functions of a complex variable. In the present paper, the necessary and sufficient condition for the conservation of the logarithmic capacity under the contraction transformation is proved. Also, we give the such conditions for the separating transformation of the condensers and domains. As the applications, the uniqueness of the extremal compact set and the extremal configuration in the some known problems of the potential theory is obtained. Our results supplement the uniqueness theorems for the symmetrization transformations which were proved by J. A. Jenkins, I. P. Mityuk, V. A. Shlyk and other mathematicians.
@article{DVMG_2002_3_2_a0,
     author = {V. N. Dubinin and E. G. Prilepkina},
     title = {On the uniqueness theorems for the transformations of sets and condensers in the plane},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {137--149},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a0/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - E. G. Prilepkina
TI  - On the uniqueness theorems for the transformations of sets and condensers in the plane
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 137
EP  - 149
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a0/
LA  - ru
ID  - DVMG_2002_3_2_a0
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A E. G. Prilepkina
%T On the uniqueness theorems for the transformations of sets and condensers in the plane
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 137-149
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a0/
%G ru
%F DVMG_2002_3_2_a0
V. N. Dubinin; E. G. Prilepkina. On the uniqueness theorems for the transformations of sets and condensers in the plane. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 2, pp. 137-149. http://geodesic.mathdoc.fr/item/DVMG_2002_3_2_a0/

[1] V. N. Dubinin, “Capacities and geometric transformations of subsets in $n$-space”, Geometric and Functional Analysis, 3:4 (1993), 342–369 | DOI | MR | Zbl

[2] A. II Baernstein, “A unified approach to symmetrization”, Partial differential equations of elliptic type, Proceedings of the conference (Cortona, 1992), Cambridge Univ. Press, 1994, 77–91 | MR

[3] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matematicheskikh nauk, 49:1 (1994), 3–76 | MR | Zbl

[4] J. A. Jenkins, “Some uniqueness rezults in the theory of symmetrization”, Ann. math., 75:2 (1962), 223–230 | DOI | MR | Zbl

[5] V. K. Kheiman, Mnogolistnye funktsii, In. lit., M., 1960 | MR

[6] M. Ohtsuka, Dirichlet problem, extremal length and prime ends, New-York, 1970 | Zbl

[7] I. P. Mityuk, “Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii”, Vvedenie v simmetrizatsionnye metody, Kubanskii gosuniversitet, Krasnodar, 1980

[8] V. A. Shlyk, “O teoreme edinstvennosti dlya simmetrizatsii proizvolnykh kondensatorov”, Sib. matem. zhurnal, 1982, no. 2, 165–175 | MR | Zbl

[9] I. P. Mityuk, “Teorema edinosti pri simmetrizatsii $S_\theta^{(1)}$”, Dop. AN URSR, 1970, no. 9, 778–779 | Zbl

[10] I. P. Mityuk, V. A. Shlyk, “O spiralno-usrednyayuschei simmetrizatsii i nekotorykh ee primeneniyakh”, Izv. Severo-Kavkazskogo nauch. tsentra vyssh. shkoly, 1973, no. 4, 61–64

[11] I. P. Mityuk, “Teoremy edinstvennosti pri simmetrizatsii oblastei i kondensatorov”, Nekotor. vopr. sovrem. teorii funktsii, Novosibirsk, 1976, 101–108

[12] A. Baernstein, “Integral means, univalent functions and circular symmetrization”, Acta Math., 133:3-4 (1974), 139–169 | DOI | MR

[13] A. Yu. Solynin, “Polyarizatsiya i funktsionalnye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185 | MR | Zbl

[14] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[15] T. Ransford, Potential theory in the complex plane, Cambridge Univ. Press., 1995 | MR | Zbl

[16] E. G. Akhmedzyanova, Teorema edinstvennosti dlya radialnogo preobrazovaniya zamknutykh mnozhestv, Preprint No 4 IPM DVO RAN., 1998

[17] L. V. Kovalev, “Monotonnost obobschennogo privedennogo modulya”, Zap.nauchn. semin. POMI, 276, 2001, 219–236 | MR | Zbl

[18] E. G. Akhmedzyanova, V. N. Dubinin, “Radialnye preobrazovaniya mnozhestv i neravenstva dlya transfinitnogo diametra”, Izvestiya vuzov. Matematika, 1999, no. 4, 3–8 | MR | Zbl