Mathematical simulation of process of deformation of materials
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 93-101
Cet article a éte moissonné depuis la source Math-Net.Ru
The approach to exposition of fracture from the point of view of a body is offered. The similar approach enables to connect the basic performances obtained at trials is model on monoaxial deformation with invariant performances of a tensor of strains.
@article{DVMG_2002_3_1_a9,
author = {A. I. Chromov and K. A. Zhigalkin},
title = {Mathematical simulation of process of deformation of materials},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {93--101},
year = {2002},
volume = {3},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a9/}
}
A. I. Chromov; K. A. Zhigalkin. Mathematical simulation of process of deformation of materials. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 93-101. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a9/
[1] E. Onat, W. Prager, J. Appl. Phys., 4 (1954), 491–493 | DOI | MR
[2] A. I. Khromov, Razrushenie zhestkoplasticheskikh tel, Dalnauka, Vladivostok, 1996, 181 pp.
[3] A. I. Khromov, “Lokalizatsiya plasticheskikh deformatsii i razrushenie idealnykh zhestkoplasticheskikh tel”, DAN, 362:2 (1998), 202–205 | MR | Zbl
[4] Ya. B. Fridman, Mekhanicheskie svoistva metallov, v. 2, Mashinostroenie, M., 1974, 368 pp.
[5] O. V. Kozlova, “Deformatsiya i razrushenie idealnogo zhestkoplasticheskogo tsilindra”, Prikladnye zadachi mekhaniki deformiruemogo tverdogo tela i progressivnye tekhnologii v mashinostroenii, 2, Dalnauka, Vladivostok, 2001, 17–22
[6] A. Nadai, Plastichnost i razrushenie tverdykh tel, IL, 1954