The product theorem for interacting queueing system
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 61-63
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present work two interacting queueing systems which are in a regime of an adaptation are considered. It is shown, that stationary distribution of these systems does not depend on their interactions.
@article{DVMG_2002_3_1_a6,
author = {M. A. Osipova},
title = {The product theorem for interacting queueing system},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {61--63},
year = {2002},
volume = {3},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a6/}
}
M. A. Osipova. The product theorem for interacting queueing system. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 61-63. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a6/
[1] G. Sh. Tsitsiashvili, M. A. Osipova, N. V. Kolev, “Vychislenie statsionarnogo raspredeleniya v adaptivnykh setyakh massovogo obsluzhivaniya”, DV mat. zhurnal, 1:2 (2001) | Zbl
[2] G. Sh. Tsitsiashvili, M. A. Osipova, N. V. Koliev, D. Baum, A Product Theorem for Markov Chains with Application to PF-Queueing Networks, University of Trier, 2001, 18 pp.
[3] L. Ya. Glybin, Ritm zhizni chelovecheskogo obschestva, Otkrytie fenomena, Vladivostok, 1996, 154 pp.