The product theorem for interacting queueing system
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 61-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work two interacting queueing systems which are in a regime of an adaptation are considered. It is shown, that stationary distribution of these systems does not depend on their interactions.
@article{DVMG_2002_3_1_a6,
     author = {M. A. Osipova},
     title = {The product theorem for interacting queueing system},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {61--63},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a6/}
}
TY  - JOUR
AU  - M. A. Osipova
TI  - The product theorem for interacting queueing system
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 61
EP  - 63
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a6/
LA  - ru
ID  - DVMG_2002_3_1_a6
ER  - 
%0 Journal Article
%A M. A. Osipova
%T The product theorem for interacting queueing system
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 61-63
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a6/
%G ru
%F DVMG_2002_3_1_a6
M. A. Osipova. The product theorem for interacting queueing system. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 61-63. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a6/

[1] G. Sh. Tsitsiashvili, M. A. Osipova, N. V. Kolev, “Vychislenie statsionarnogo raspredeleniya v adaptivnykh setyakh massovogo obsluzhivaniya”, DV mat. zhurnal, 1:2 (2001) | Zbl

[2] G. Sh. Tsitsiashvili, M. A. Osipova, N. V. Koliev, D. Baum, A Product Theorem for Markov Chains with Application to PF-Queueing Networks, University of Trier, 2001, 18 pp.

[3] L. Ya. Glybin, Ritm zhizni chelovecheskogo obschestva, Otkrytie fenomena, Vladivostok, 1996, 154 pp.