Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2002_3_1_a4, author = {G. Sh. Tsitsiashvili and N. V. Markova}, title = {Asymptotic invariants in one channel queueing system $G|G|1|\infty$}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {52--57}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a4/} }
TY - JOUR AU - G. Sh. Tsitsiashvili AU - N. V. Markova TI - Asymptotic invariants in one channel queueing system $G|G|1|\infty$ JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2002 SP - 52 EP - 57 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a4/ LA - ru ID - DVMG_2002_3_1_a4 ER -
G. Sh. Tsitsiashvili; N. V. Markova. Asymptotic invariants in one channel queueing system $G|G|1|\infty$. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 52-57. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a4/
[1] C. Kluppelberg, “On Subexponential Distributions and Integrated Tails”, J. Appl. Probab., 25 (1988), 132–141 | DOI | MR
[2] S. Asmussen, V. Kalashnikov, D. Konstantinides, C. Kluppelberg, G. Tsitsiashvili, “A local Limit Theorem for Random Walk Maxima with Heavy Tails”, Statist. Probab. Lett., 56:4 (2002), 399–404 | DOI | MR | Zbl
[3] C. M. Goldie, C. Klüppelberg, Subexponential Distributions, 96(1), Johannes Guttenberg, Universität Mainz, 1996, 20 pp.
[4] P. Emprechts, C. Kluppelberg, T. Mikosh, Extremal Events in Finance and Insurance, Springer, 1997
[5] P. Embrechts and N. Veraverbeke, “Estimates for the Probability of Ruin with Special Emphasis on the Possibility of Large Claims”, Mathematics and Economics, 1 (1982), 55–72 | DOI | MR | Zbl
[6] S. Asmussen, Ruin Probabilities, World Scientific, Singapore, 2000 | MR
[7] S. Foss, “Asymptotics for Distributions of Stationary Characteristics in Queueing Networks with Heavy Tails”, Modern Problems in Applied Probability (20–27 August), Novosibirsk, 2000, 9 pp. | Zbl
[8] E. J. G. Pitman, “Subexponential Distribution Functions”, J. Austral. Math. Soc. Ser. A, 29 (1980), 337–347 | DOI | MR | Zbl