Asymptotic invariants in one channel queueing system $G|G|1|\infty$
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 52-57
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to construction and investigation of invariant characteristics of stationary distribution tails of waiting time in queueing systems $M|M|1|\infty$, $G|G|1|\infty$ defined by subexponential distributions. Tails of these distributions are defined with accuracy of slowly varying multipliers. Stationary characteristics invariant to these multipliers are searched. Idea of invariant characteristics construction is based on classification of subexponential distributions suggested by Goldie and Kluppelberg and Karamata theorem and Embrechts-Veraverbeke formula.
@article{DVMG_2002_3_1_a4,
author = {G. Sh. Tsitsiashvili and N. V. Markova},
title = {Asymptotic invariants in one channel queueing system $G|G|1|\infty$},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {52--57},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a4/}
}
TY - JOUR AU - G. Sh. Tsitsiashvili AU - N. V. Markova TI - Asymptotic invariants in one channel queueing system $G|G|1|\infty$ JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2002 SP - 52 EP - 57 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a4/ LA - ru ID - DVMG_2002_3_1_a4 ER -
G. Sh. Tsitsiashvili; N. V. Markova. Asymptotic invariants in one channel queueing system $G|G|1|\infty$. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 52-57. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a4/