Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2002_3_1_a3, author = {Dingcheng Wang and Chun Su and Zhishui Hu}, title = {Precise large deviation for random sums of random walks with dependent heavy-tailed steps}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {34--51}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/} }
TY - JOUR AU - Dingcheng Wang AU - Chun Su AU - Zhishui Hu TI - Precise large deviation for random sums of random walks with dependent heavy-tailed steps JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2002 SP - 34 EP - 51 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/ LA - en ID - DVMG_2002_3_1_a3 ER -
%0 Journal Article %A Dingcheng Wang %A Chun Su %A Zhishui Hu %T Precise large deviation for random sums of random walks with dependent heavy-tailed steps %J Dalʹnevostočnyj matematičeskij žurnal %D 2002 %P 34-51 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/ %G en %F DVMG_2002_3_1_a3
Dingcheng Wang; Chun Su; Zhishui Hu. Precise large deviation for random sums of random walks with dependent heavy-tailed steps. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 34-51. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/
[1] K. B. Athreya and P. E. Ney, Branching processes, Springer, Berlin, 1972 | MR | Zbl
[2] P. Brockwell and R. Davis, Time series: Theory and Methods, 2nd ed, Springer, New York, 1991 | MR | Zbl
[3] D. B. H. Cline and T. Hsing, Large deviation probabilities for sums and maxima of random variables with heavy or subexponential tails, Preprint, Texas A Univ, 1991
[4] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling extremal events for insurance and finance, Springer, Berlin, 1997 | MR | Zbl
[5] C. C. Heyde, “A contribution to the theory of large deviations for sums of independent random variables”, Z. Wahrscheinlichkeitstheorie verw. Geb., 7 (1967a), 303–308 | DOI | MR | Zbl
[6] C. C. Heyde, “On large deviation problems for sums of random variables which are not attracted to the normal law”, Ann. Math. Statist., 38 (1967b), 1575–1578 | DOI | MR | Zbl
[7] C. C. Heyde, “On large deviation probabilities in the case of attraction to a nonnormal stable law”, Sankyā Ser. A, 30 (1968), 253–258 | MR | Zbl
[8] J. Hoffmann-J$\phi$rgensen, “Sums of independent Banach space valued random variables”, Studia. Math., 52 (1974), 159–186 | MR | Zbl
[9] C. Klüppelberg and T. Mikosch, “Large deviations of heavy-tailed random sums with applications in insurance and finance”, J. Appl. Prob., 34 (1997), 293–308 | DOI | MR | Zbl
[10] T. Mikosch and G. Samorodnitsky, “The supremum of a negative drift random walk with dependent heavy-tailed steps”, Ann. Appl. Probab., 10:3 (2000), 1025–1064 | DOI | MR | Zbl
[11] T. Mikosch and A. V. Nagaev, “Large deviations of heavy-tailed sums with applications in insurance”, Extremes, 1:1 (1998), 81–110 | DOI | MR | Zbl
[12] A. V. Nagaev, “Integral limit theorems for large deviations when Cramer's condition is not fulfilled. I, II”, Theory Prob. Appl., 14 (1969), 51–64 ; 193–208 | MR | Zbl | MR | Zbl
[13] A. V. Nagaev, “Limit theorems for large deviations when Cramer's conditiona are violated”, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, 6 (1969), 17–22 (In Russian) | MR
[14] S. V. Nagaev, “Large deviations of sums of independent random variables”, Random Processes and Statistical Decision Function, Trans. Sixth Prague Conf. Information Theory, Acad. Prague, 1973, 657–674 | MR
[15] S. V. Nagaev, “Large deviations of sums of independent random variables”, Ann. Prob., 7 (1979), 746–789 | DOI | MR
[16] I. F. Pinelis, “On the asymptotic equivalence of probabilities of large deviations for sums and maxima of independent random variables”, Limit Theorems in Probability theory, Trudy Inst. Math., 5, Nauka, Novosibirsk, 1985 (In Russian) | MR
[17] A. G. Pykes, “On the tails of waiting-time distributions”, J. Appl. Prob., 12 (1975), 555–564 | DOI | MR
[18] T. Rolski, H. Schmidli and J. Teugels, Stochastic processes for insurance and finance, John Wiley Sons Ltd, Chichester, 1999 | MR
[19] L. V. Rozovski, “Probabilities of large deviations on the whole axis”, Theory Prob. Appl., 38 (1993), 53–79 | DOI | MR | Zbl
[20] C. Su, Q. H. Tang and T. Jiang, “A Contribution to Large Deviations for Heavy -tailed Random Sums”, Chinese Science, 44:4 (2001), 438–444 | DOI | MR | Zbl