Precise large deviation for random sums of random walks with dependent heavy-tailed steps
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 34-51

Voir la notice de l'article provenant de la source Math-Net.Ru

In most applications the assumption of independent step sizes is, clearly, unrealistic. It is an important way to model the dependent steps $\{X_n \}_{n=1}^{\infty}$ of the random walk as a two-sided linear process, $X_n=\sum\limits_{j=-\infty}^{\infty}\varphi_{n-j} \eta_j$, $n=1,2,3,\dots$, where $\{\eta,\eta_n,\ n=0,\pm 1,\pm 2,\pm 3,\dots\}$ is a sequence of $iid$ random variables with finite mean $\mu>0$ . Moreover suppose that $\eta$ satisfies certain tailed balance condition and its distribution function belongs to $ERV(-\alpha,-\beta)$ with $1\alpha\le\beta\infty$. Denote $S_n=X_1+X_2+\dots+X_n$, $n\ge 1$. At first we discuss precise large deviation problems of non-random sums $\{S_n-ES_n\}_{ n=1}^{\infty}$, then discuss precise large deviation problems of $S(t)-ES(t)=\sum_{i=1}^{N(t)}(X_i-EX_i)$, $t\ge 0$ for non-negative and inter-value random process $N(t)$ such that Assumption A, independent of $\{\eta_n\}_{n=-\infty}^{\infty}$. We show that if the steps of random walk are not independent, then precise large deviation result of random sums may be different from the case with $iid$ steps, which means that dependence affects the tails of compound processes $\{S(t)\}_{t \ge 0}$.
@article{DVMG_2002_3_1_a3,
     author = {Dingcheng Wang and Chun Su and Zhishui Hu},
     title = {Precise large deviation for random sums of random walks with dependent heavy-tailed steps},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {34--51},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/}
}
TY  - JOUR
AU  - Dingcheng Wang
AU  - Chun Su
AU  - Zhishui Hu
TI  - Precise large deviation for random sums of random walks with dependent heavy-tailed steps
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 34
EP  - 51
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/
LA  - en
ID  - DVMG_2002_3_1_a3
ER  - 
%0 Journal Article
%A Dingcheng Wang
%A Chun Su
%A Zhishui Hu
%T Precise large deviation for random sums of random walks with dependent heavy-tailed steps
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 34-51
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/
%G en
%F DVMG_2002_3_1_a3
Dingcheng Wang; Chun Su; Zhishui Hu. Precise large deviation for random sums of random walks with dependent heavy-tailed steps. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 34-51. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/