Precise large deviation for random sums of random walks with dependent heavy-tailed steps
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 34-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In most applications the assumption of independent step sizes is, clearly, unrealistic. It is an important way to model the dependent steps $\{X_n \}_{n=1}^{\infty}$ of the random walk as a two-sided linear process, $X_n=\sum\limits_{j=-\infty}^{\infty}\varphi_{n-j} \eta_j$, $n=1,2,3,\dots$, where $\{\eta,\eta_n,\ n=0,\pm 1,\pm 2,\pm 3,\dots\}$ is a sequence of $iid$ random variables with finite mean $\mu>0$ . Moreover suppose that $\eta$ satisfies certain tailed balance condition and its distribution function belongs to $ERV(-\alpha,-\beta)$ with $1\alpha\le\beta\infty$. Denote $S_n=X_1+X_2+\dots+X_n$, $n\ge 1$. At first we discuss precise large deviation problems of non-random sums $\{S_n-ES_n\}_{ n=1}^{\infty}$, then discuss precise large deviation problems of $S(t)-ES(t)=\sum_{i=1}^{N(t)}(X_i-EX_i)$, $t\ge 0$ for non-negative and inter-value random process $N(t)$ such that Assumption A, independent of $\{\eta_n\}_{n=-\infty}^{\infty}$. We show that if the steps of random walk are not independent, then precise large deviation result of random sums may be different from the case with $iid$ steps, which means that dependence affects the tails of compound processes $\{S(t)\}_{t \ge 0}$.
@article{DVMG_2002_3_1_a3,
     author = {Dingcheng Wang and Chun Su and Zhishui Hu},
     title = {Precise large deviation for random sums of random walks with dependent heavy-tailed steps},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {34--51},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/}
}
TY  - JOUR
AU  - Dingcheng Wang
AU  - Chun Su
AU  - Zhishui Hu
TI  - Precise large deviation for random sums of random walks with dependent heavy-tailed steps
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 34
EP  - 51
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/
LA  - en
ID  - DVMG_2002_3_1_a3
ER  - 
%0 Journal Article
%A Dingcheng Wang
%A Chun Su
%A Zhishui Hu
%T Precise large deviation for random sums of random walks with dependent heavy-tailed steps
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 34-51
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/
%G en
%F DVMG_2002_3_1_a3
Dingcheng Wang; Chun Su; Zhishui Hu. Precise large deviation for random sums of random walks with dependent heavy-tailed steps. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 34-51. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/

[1] K. B. Athreya and P. E. Ney, Branching processes, Springer, Berlin, 1972 | MR | Zbl

[2] P. Brockwell and R. Davis, Time series: Theory and Methods, 2nd ed, Springer, New York, 1991 | MR | Zbl

[3] D. B. H. Cline and T. Hsing, Large deviation probabilities for sums and maxima of random variables with heavy or subexponential tails, Preprint, Texas A Univ, 1991

[4] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling extremal events for insurance and finance, Springer, Berlin, 1997 | MR | Zbl

[5] C. C. Heyde, “A contribution to the theory of large deviations for sums of independent random variables”, Z. Wahrscheinlichkeitstheorie verw. Geb., 7 (1967a), 303–308 | DOI | MR | Zbl

[6] C. C. Heyde, “On large deviation problems for sums of random variables which are not attracted to the normal law”, Ann. Math. Statist., 38 (1967b), 1575–1578 | DOI | MR | Zbl

[7] C. C. Heyde, “On large deviation probabilities in the case of attraction to a nonnormal stable law”, Sankyā Ser. A, 30 (1968), 253–258 | MR | Zbl

[8] J. Hoffmann-J$\phi$rgensen, “Sums of independent Banach space valued random variables”, Studia. Math., 52 (1974), 159–186 | MR | Zbl

[9] C. Klüppelberg and T. Mikosch, “Large deviations of heavy-tailed random sums with applications in insurance and finance”, J. Appl. Prob., 34 (1997), 293–308 | DOI | MR | Zbl

[10] T. Mikosch and G. Samorodnitsky, “The supremum of a negative drift random walk with dependent heavy-tailed steps”, Ann. Appl. Probab., 10:3 (2000), 1025–1064 | DOI | MR | Zbl

[11] T. Mikosch and A. V. Nagaev, “Large deviations of heavy-tailed sums with applications in insurance”, Extremes, 1:1 (1998), 81–110 | DOI | MR | Zbl

[12] A. V. Nagaev, “Integral limit theorems for large deviations when Cramer's condition is not fulfilled. I, II”, Theory Prob. Appl., 14 (1969), 51–64 ; 193–208 | MR | Zbl | MR | Zbl

[13] A. V. Nagaev, “Limit theorems for large deviations when Cramer's conditiona are violated”, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, 6 (1969), 17–22 (In Russian) | MR

[14] S. V. Nagaev, “Large deviations of sums of independent random variables”, Random Processes and Statistical Decision Function, Trans. Sixth Prague Conf. Information Theory, Acad. Prague, 1973, 657–674 | MR

[15] S. V. Nagaev, “Large deviations of sums of independent random variables”, Ann. Prob., 7 (1979), 746–789 | DOI | MR

[16] I. F. Pinelis, “On the asymptotic equivalence of probabilities of large deviations for sums and maxima of independent random variables”, Limit Theorems in Probability theory, Trudy Inst. Math., 5, Nauka, Novosibirsk, 1985 (In Russian) | MR

[17] A. G. Pykes, “On the tails of waiting-time distributions”, J. Appl. Prob., 12 (1975), 555–564 | DOI | MR

[18] T. Rolski, H. Schmidli and J. Teugels, Stochastic processes for insurance and finance, John Wiley Sons Ltd, Chichester, 1999 | MR

[19] L. V. Rozovski, “Probabilities of large deviations on the whole axis”, Theory Prob. Appl., 38 (1993), 53–79 | DOI | MR | Zbl

[20] C. Su, Q. H. Tang and T. Jiang, “A Contribution to Large Deviations for Heavy -tailed Random Sums”, Chinese Science, 44:4 (2001), 438–444 | DOI | MR | Zbl