Precise large deviation for random sums of random walks with dependent heavy-tailed steps
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 34-51
Voir la notice de l'article provenant de la source Math-Net.Ru
In most applications the assumption of independent step sizes is, clearly, unrealistic. It is an important way to model the dependent steps $\{X_n \}_{n=1}^{\infty}$ of the random walk as a two-sided linear process, $X_n=\sum\limits_{j=-\infty}^{\infty}\varphi_{n-j} \eta_j$, $n=1,2,3,\dots$, where $\{\eta,\eta_n,\ n=0,\pm 1,\pm 2,\pm 3,\dots\}$ is a sequence of $iid$ random variables with finite mean $\mu>0$ . Moreover suppose that $\eta$ satisfies certain tailed balance condition and its distribution function belongs to $ERV(-\alpha,-\beta)$ with $1\alpha\le\beta\infty$. Denote $S_n=X_1+X_2+\dots+X_n$, $n\ge 1$. At first we discuss precise large deviation problems of non-random sums $\{S_n-ES_n\}_{ n=1}^{\infty}$, then discuss precise large deviation problems of $S(t)-ES(t)=\sum_{i=1}^{N(t)}(X_i-EX_i)$, $t\ge 0$ for non-negative and inter-value random process $N(t)$ such that Assumption A, independent of $\{\eta_n\}_{n=-\infty}^{\infty}$. We show that if the steps of random walk are not independent, then precise large deviation result of random sums may be different from the case with $iid$ steps, which means that dependence affects the tails of compound processes $\{S(t)\}_{t \ge 0}$.
@article{DVMG_2002_3_1_a3,
author = {Dingcheng Wang and Chun Su and Zhishui Hu},
title = {Precise large deviation for random sums of random walks with dependent heavy-tailed steps},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {34--51},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/}
}
TY - JOUR AU - Dingcheng Wang AU - Chun Su AU - Zhishui Hu TI - Precise large deviation for random sums of random walks with dependent heavy-tailed steps JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2002 SP - 34 EP - 51 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/ LA - en ID - DVMG_2002_3_1_a3 ER -
%0 Journal Article %A Dingcheng Wang %A Chun Su %A Zhishui Hu %T Precise large deviation for random sums of random walks with dependent heavy-tailed steps %J Dalʹnevostočnyj matematičeskij žurnal %D 2002 %P 34-51 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/ %G en %F DVMG_2002_3_1_a3
Dingcheng Wang; Chun Su; Zhishui Hu. Precise large deviation for random sums of random walks with dependent heavy-tailed steps. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 34-51. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a3/