On a $W^2_2$ regularity of a solution of semicoercive variational inequalities
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 210-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $W^2_2$-regularity of the solution is established for semicoercive variational inequalities.
@article{DVMG_2002_3_1_a13,
     author = {R. V. Namm and A. G. Podgaev},
     title = {On a $W^2_2$ regularity of a solution of semicoercive variational inequalities},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {210--215},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a13/}
}
TY  - JOUR
AU  - R. V. Namm
AU  - A. G. Podgaev
TI  - On a $W^2_2$ regularity of a solution of semicoercive variational inequalities
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 210
EP  - 215
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a13/
LA  - ru
ID  - DVMG_2002_3_1_a13
ER  - 
%0 Journal Article
%A R. V. Namm
%A A. G. Podgaev
%T On a $W^2_2$ regularity of a solution of semicoercive variational inequalities
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 210-215
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a13/
%G ru
%F DVMG_2002_3_1_a13
R. V. Namm; A. G. Podgaev. On a $W^2_2$ regularity of a solution of semicoercive variational inequalities. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 210-215. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a13/

[1] H. Brezis, “Problèmes unilatéraux”, J. de Math.Pures et Appliquées, 51 (1972), 1–168 | MR | Zbl

[2] P. Grisvard, “Boundary value problems in non-smooth domains”, Lecture Notes MD 20742, 19, College Park, University of Maryland. Dep. Math., 1980

[3] M. Minu, Matematicheskoe programmirovanie, Nauka, M., 1990 | MR

[4] A. A. Kaplan, R. V. Namm, “Ob otsenke skorosti skhodimosti iteratsionnykh protsessov s prox-regulyarizatsiei”, Sbornik “Issledovaniya po uslovnoi korrektnosti zadach matematicheskoi fiziki”, Novosibirsk, 1989, 60–77 | MR

[5] R. V. Namm, “Stable methods for ill-posed variational inequalities in mechanics”, Lecture Notes in Economics and Mathematical Systems, 452, Springer-Verlag, Berlin – Heidelberg – New York, 1997, 214–228 | MR | Zbl

[6] A. Ya. Zolotukhin, R. V. Hamm, A. V. Pachina, “Priblizhennoe reshenie zadachi Mosolova i Myasnikova s treniem na granitse po zakonu Kulona”, Sib. zhurn. vychisl. matemitiki, 4:2 (2001), 163–177, RAH. Sib. otd-nie, Hovosibirsk

[7] F. P. Vasilev, Lektsii po metodam resheniya ekstremalnykh zadach, MGU, M., 1974

[8] P.-Zh. Loran., Approksimatsiya i optimizatsiya, Mir, M., 1975

[9] G. Dyuvo, Zh. L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[10] S. G. Mikhlin, Lineinye upavneniya v chastnykh ppoizvodnykh, Vysshaya shkola, M., 1977 | MR

[11] R. V. Namm, A. G. Podgaev, Edinstvennost v odnom variatsionnom neravenstve s nedifferentsiruemym funktsionalom, otnosyaschimsya k zadache s treniem, Preprint No 7. IPM DVO RAN, Dalnauka, Khabarovsk, 1994

[12] A. G. Podgaev, “O teremakh edinstvennosti v zadache minimizatsii odnogo nedifferentsiruemogo funktsionala”, Dalnevostochnyi mat. zhurnal, 1:1 (2001), 28–37