On a $W^2_2$ regularity of a solution of semicoercive variational inequalities
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 210-215

Voir la notice de l'article provenant de la source Math-Net.Ru

The $W^2_2$-regularity of the solution is established for semicoercive variational inequalities.
@article{DVMG_2002_3_1_a13,
     author = {R. V. Namm and A. G. Podgaev},
     title = {On a $W^2_2$ regularity of a solution of semicoercive variational inequalities},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {210--215},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a13/}
}
TY  - JOUR
AU  - R. V. Namm
AU  - A. G. Podgaev
TI  - On a $W^2_2$ regularity of a solution of semicoercive variational inequalities
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 210
EP  - 215
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a13/
LA  - ru
ID  - DVMG_2002_3_1_a13
ER  - 
%0 Journal Article
%A R. V. Namm
%A A. G. Podgaev
%T On a $W^2_2$ regularity of a solution of semicoercive variational inequalities
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 210-215
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a13/
%G ru
%F DVMG_2002_3_1_a13
R. V. Namm; A. G. Podgaev. On a $W^2_2$ regularity of a solution of semicoercive variational inequalities. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 210-215. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a13/