On the method of Galerkin for the quasilinear parabolic equations in noncylindric domain
Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article investigates the boundary value problem for the quasilinear parabolic equations. The existence of solutions in Sobolev's spaces $W_p^{2m,1}$ is proved, as well as the convergent of the approximate solutions, built according to Galerkin's method, to the exact solution with respect to the norm of the space $ W_2^{2m,1}$. The estimates of the convergence for some types of nonlinean are obtained.
@article{DVMG_2002_3_1_a0,
     author = {P. V. Vinogradova and A. G. Zarubin},
     title = {On the method of {Galerkin} for the quasilinear parabolic equations in noncylindric domain},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a0/}
}
TY  - JOUR
AU  - P. V. Vinogradova
AU  - A. G. Zarubin
TI  - On the method of Galerkin for the quasilinear parabolic equations in noncylindric domain
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2002
SP  - 3
EP  - 17
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a0/
LA  - ru
ID  - DVMG_2002_3_1_a0
ER  - 
%0 Journal Article
%A P. V. Vinogradova
%A A. G. Zarubin
%T On the method of Galerkin for the quasilinear parabolic equations in noncylindric domain
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2002
%P 3-17
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a0/
%G ru
%F DVMG_2002_3_1_a0
P. V. Vinogradova; A. G. Zarubin. On the method of Galerkin for the quasilinear parabolic equations in noncylindric domain. Dalʹnevostočnyj matematičeskij žurnal, Tome 3 (2002) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/DVMG_2002_3_1_a0/

[1] S./,G. Krein, G. I. Laptev, “Abstraktnaya skhema rassmotreniya parabolicheskikh zadach v netsilindricheskikh oblastyakh”, Differentsialnye uravneniya, 5:8 (1969), 1458–1469 | MR | Zbl

[2] S. G. Krein, “Povedenie reshenii ellipticheskikh zadach pri variatsii oblasti”, Studia mathematica, 31 (1968), 411–424 | MR | Zbl

[3] N. E. Istomina, A. G. Podgaev, “O razreshimosti zadachi dlya kvazilineinogo vyrozhdayuschegosya parabolicheskogo uravneniya v oblasti s netsilindricheskoi granitsei”, Dalnevostochnyi matematicheskii zhurnal, 1:1 (2000), 63–73

[4] P. Cannarsa, G. Da Prato, S.-P. Zolezio, “The damped wave equations in a moving domain”, Differential Equations, 85:1 (1990), 1–16 | DOI | MR | Zbl

[5] A. I. Kozhanov, “Zamechanie ob odnoi zadache vyazkouprugosti i svyazannom s nei vozmuschennom volnovom uravnenii v netsilindricheskikh oblastyakh”, Neklassicheskie uravneniya matem. fiziki, NGU, Novosibirsk, 1993, 99–103 | MR

[6] A. I. Kozhanov, “On a nonlinear equation of viscoelqsticity in noncylindric domains”, Matematicheskie zametki, 5, no. 2, YaGU, 1998, 107–117 | MR

[7] A. I. Kozhanov, N. A. Larkin, “O razreshimosti kraevykh zadach dlya silno nelineinykh uravnenii vyazkouprugosti v netsilindricheskikh oblastyakh”, Matematicheskie zametki, 6, no. 1, YaGU, 1999, 36–45 | MR | Zbl

[8] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[9] V. A. Solonnikov, “Ob otsenkakh v $L_p$ reshenii ellipticheskikh i parabolicheskikh sistem”, Tr. MIAN SSSR, SII, 1967, 137–160 | MR

[10] V. P. Glushko, S. G. Krein, “Neravenstva dlya norm proizvodnykh v prostranstvakh $L_p$ s vesom”, Sib. mat. zhurn., 1:3 (1960), 343–382 | Zbl

[11] P. Oya, “O skhodimosti i ustoichivosti metoda Galerkina dlya parabolicheskikh uravnenii s differentsiruemymi operatorami”, Trudy po matematike i mekhanike, XVII, no. 374, Tart. Gos. Un-t, Tartu, 1975, 194–209

[12] Yu. A. Dubinskii, “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, Uspekhi matem. nauk, XXIII:1(139) (1968), 45–90 | MR