@article{DVMG_2001_2_2_a9,
author = {M. A. Osipova and G. Sh. Tsitsiashvili and N. V. Koliev},
title = {Calculation of stationary distributions in adoptive queueing networks},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {99--105},
year = {2001},
volume = {2},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a9/}
}
TY - JOUR AU - M. A. Osipova AU - G. Sh. Tsitsiashvili AU - N. V. Koliev TI - Calculation of stationary distributions in adoptive queueing networks JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2001 SP - 99 EP - 105 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a9/ LA - ru ID - DVMG_2001_2_2_a9 ER -
M. A. Osipova; G. Sh. Tsitsiashvili; N. V. Koliev. Calculation of stationary distributions in adoptive queueing networks. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 99-105. http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a9/
[1] D. M. Lucantoni, “New results on the single server queue with a batch Markovian arrival process”, Communications in Statistics: Stochastic Models, 7:1 (1991), 1–46, Marcel Dekker Inc | DOI | MR | Zbl
[2] D. M. Lucantoni, “The BMAP/G$|$1 Queue: A Tutorial”, Models and Techniques for Perfomance Evalution of Computer and Communication Systems, eds. L. Donatello, R. Nelson, Springer, Berlin, 1991, 330–358 | MR
[3] D. Baum, On Markovian Spatial Arrival Processes for the Performance Analysis of Mobile Communication Networks, Research Rep., 98–07, University of Trier, Submitted to Advances in Performance Analysis, Notable Publications, Inc
[4] F. Machihara, “A BMAP/SM/1 Queue with Service Times Depending on the Arrival Process”, Queueing systems, 32:1-3 (1999), 1–15 | MR
[5] L. Ya. Glybin, Ritm zhizni chelovecheskogo obschestva. Otkrytie fenomena, Vladivostok, 1996, 154 pp.
[6] G. Sh. Tsitsiashvili, M. A. Osipova, “Issledovanie statsionarnykh kharakteristik nekotorykh peremennykh sistem obsluzhivaniya”, DV mat. zhurnal, 1 (2000), 58–62
[7] G. I. Ivchenko, V. A. Kashtanov, I. N. Kovalenko, Teoriya massovogo obsluzhivaniya, Vysshaya shkola, M., 1982, 256 pp. | Zbl
[8] Yu. A. Rozanov, Teoriya veroyatnostei, sluchainye protsessy i matematicheskaya statistika, Nauka, M., 1985, 318 pp. | MR
[9] I. N. Kovalenko, N. Yu. Kuznetsov, V. M. Shurenkov, Sluchainye protsessy, Kiev, 1983, 366 pp. | MR
[10] Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, Itogi nauki i tekhniki, 1983, 180 pp.