Calculation of stationary distributions in adoptive queueing networks
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 99-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

Queueing networks with random varying intensities are convenient models of computer and telecommunication systems. A behaviour of these systems depends on human activity which intensity is defined by intradaily dynamics of physiological and mental indexes. So random current intensities of input flow and servicing for systems arranged in the same time zone are to be proportional. This hypothesis, called adoptation hypothesis, allows to make generalization of Jackson product theorem as for opened so for closed queueing networks. So it relieves analysis of queueing networks with varying intensities and makes its results more realistical.
@article{DVMG_2001_2_2_a9,
     author = {M. A. Osipova and G. Sh. Tsitsiashvili and N. V. Koliev},
     title = {Calculation of stationary distributions in adoptive queueing networks},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {99--105},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a9/}
}
TY  - JOUR
AU  - M. A. Osipova
AU  - G. Sh. Tsitsiashvili
AU  - N. V. Koliev
TI  - Calculation of stationary distributions in adoptive queueing networks
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 99
EP  - 105
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a9/
LA  - ru
ID  - DVMG_2001_2_2_a9
ER  - 
%0 Journal Article
%A M. A. Osipova
%A G. Sh. Tsitsiashvili
%A N. V. Koliev
%T Calculation of stationary distributions in adoptive queueing networks
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 99-105
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a9/
%G ru
%F DVMG_2001_2_2_a9
M. A. Osipova; G. Sh. Tsitsiashvili; N. V. Koliev. Calculation of stationary distributions in adoptive queueing networks. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 99-105. http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a9/

[1] D. M. Lucantoni, “New results on the single server queue with a batch Markovian arrival process”, Communications in Statistics: Stochastic Models, 7:1 (1991), 1–46, Marcel Dekker Inc | DOI | MR | Zbl

[2] D. M. Lucantoni, “The BMAP/G$|$1 Queue: A Tutorial”, Models and Techniques for Perfomance Evalution of Computer and Communication Systems, eds. L. Donatello, R. Nelson, Springer, Berlin, 1991, 330–358 | MR

[3] D. Baum, On Markovian Spatial Arrival Processes for the Performance Analysis of Mobile Communication Networks, Research Rep., 98–07, University of Trier, Submitted to Advances in Performance Analysis, Notable Publications, Inc

[4] F. Machihara, “A BMAP/SM/1 Queue with Service Times Depending on the Arrival Process”, Queueing systems, 32:1-3 (1999), 1–15 | MR

[5] L. Ya. Glybin, Ritm zhizni chelovecheskogo obschestva. Otkrytie fenomena, Vladivostok, 1996, 154 pp.

[6] G. Sh. Tsitsiashvili, M. A. Osipova, “Issledovanie statsionarnykh kharakteristik nekotorykh peremennykh sistem obsluzhivaniya”, DV mat. zhurnal, 1 (2000), 58–62

[7] G. I. Ivchenko, V. A. Kashtanov, I. N. Kovalenko, Teoriya massovogo obsluzhivaniya, Vysshaya shkola, M., 1982, 256 pp. | Zbl

[8] Yu. A. Rozanov, Teoriya veroyatnostei, sluchainye protsessy i matematicheskaya statistika, Nauka, M., 1985, 318 pp. | MR

[9] I. N. Kovalenko, N. Yu. Kuznetsov, V. M. Shurenkov, Sluchainye protsessy, Kiev, 1983, 366 pp. | MR

[10] Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, Itogi nauki i tekhniki, 1983, 180 pp.