About the Vahlen theorem analog for three-dimensional lattices
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 69-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper for three-dimensional lattices we study the analog of well-known Vahlen theorem about real number approximation of neighboring convergents of a continued fraction
@article{DVMG_2001_2_2_a5,
     author = {M. O. Avdeeva},
     title = {About the {Vahlen} theorem analog for three-dimensional lattices},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {69--73},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a5/}
}
TY  - JOUR
AU  - M. O. Avdeeva
TI  - About the Vahlen theorem analog for three-dimensional lattices
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 69
EP  - 73
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a5/
LA  - ru
ID  - DVMG_2001_2_2_a5
ER  - 
%0 Journal Article
%A M. O. Avdeeva
%T About the Vahlen theorem analog for three-dimensional lattices
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 69-73
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a5/
%G ru
%F DVMG_2001_2_2_a5
M. O. Avdeeva. About the Vahlen theorem analog for three-dimensional lattices. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 69-73. http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a5/

[1] B. A. Venkov, Elementarnaya teoriya chisel, ONTI, Moskva, 1937, 219 pp.

[2] J. M. S. Cassels, An introduction to diophantine approximation, Cambridge, 1957; Vvedenie v teoriyu diofantovykh priblizhenii, M., 1961, 213 pp.

[3] G. F. Voronoi, Ob odnom obobschenii algoritma nepreryvnykh drobei, Sobranie sochinenii, v. 1, Kiev, 1952, 197–391

[4] H. Minkowski, “Zur Theorie der Kettenbruche”, Gesammelete Abhandlunden, Leipzig, 1991, 278–292

[5] V. A. Bykovskii, O. A. Gorkusha, “Minimalnye bazisy trekhmernykh polnykh reshetok”, Matematich. sb., 192:2 (2001), 57–66 | MR | Zbl

[6] V. A. Bykovskii, “Teorema Valena dlya dvumernykh podkhodyaschikh drobei”, Mat. zametki, 66:1 (1999), 30–37 | MR | Zbl