Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2001_2_2_a1, author = {E. N. Akimova}, title = {Parallel algorithms for solving 3-d elasticity problem and sparse linear systems}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {10--28}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a1/} }
TY - JOUR AU - E. N. Akimova TI - Parallel algorithms for solving 3-d elasticity problem and sparse linear systems JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2001 SP - 10 EP - 28 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a1/ LA - ru ID - DVMG_2001_2_2_a1 ER -
E. N. Akimova. Parallel algorithms for solving 3-d elasticity problem and sparse linear systems. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 10-28. http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a1/
[1] V. V. Voevodin, Matematicheskie modeli i metody v parallelnykh protsessakh, Nauka, M., 1986, 296 pp.
[2] V. N. Faddeeva, D. K. Faddeev, “Parallelnye vychisleniya v lineinoi algebre – 1”, Kibernetika, 1977, no. 6, 28–40 | MR | Zbl
[3] V. N. Faddeeva, D. K. Faddeev, “Parallelnye vychisleniya v lineinoi algebre – 2”, Kibernetika, 1982, no. 3, 18–31 | MR | Zbl
[4] E. Valyakh, Posledovatelno-parallelnye vychisleniya, Mir, M., 1985, 456 pp.
[5] I. N. Molchanov, Vvedenie v algoritmy parallelnykh vychislenii, Naukova Dumka, Kiev, 1990, 127 pp.
[6] Dzh. Ortega, Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991, 366 pp. | MR
[7] Parallelnye vychisleniya, ed. G. Rodrig, Nauka, M., 1986, 374 pp. | MR
[8] Sistemy parallelnoi obrabotki, ed. D. Ivens, Mir, M., 1985, 414 pp.
[9] N. N. Mirenkov, Parallelnoe programmirovanie dlya mnogomodulnykh vychislitelnykh sistem, Radio i svyaz, M., 1989, 320 pp. | MR | Zbl
[10] A. V. Zabrodin, V. K. Levin, V. V. Korneev, “The Massively Parallel Processing System MBC –100”, Proceedings of the Third International Conference (PaCT-95), ed. V. Malyshkin, Springer –Verlag, Berlin, 1995, 341–355
[11] E. S. Nikolaev, A. A. Samarskii, Metody resheniya setochnykh ellipticheskikh uravnenii v neregulyarnykh oblastyakh, Preprint IPM im.M.V.Keldysha, No63, Nauka, M., 1979, 23 pp.
[12] Yu. A. Kuznetsov, “Vychislitelnye metody v podprostranstvakh”, Vychislitelnye protsessy i sistemy, no. 2, Nauka, M., 1985, 265–350
[13] A. M. Matsokin, Metody fiktivnykh komponent i alternirovaniya po podoblastyam, Preprint VTs SO AN SSSR, No114, Novosibirsk, 1985, 16 pp.
[14] V. I. Lebedev, V. I. Agoshkov, Variatsionnye algoritmy metoda razdeleniya oblasti, Preprint OVM AN SSSR, No54, Nauka, M., 1983, 24 pp. | MR
[15] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 590 pp. | MR
[16] D. Lawrie, A. Sameh, “The Computation and Communication Complexity of a Parallel Banded System Solver”, ACM Trans. Math., Softwere 10 (1984), 185–195 | DOI | MR | Zbl
[17] L. Johnsson, “Solving Narrow Banded Systems on Ensemble Architectures”, ACM Trans. Math., Softwere 11 (1985), 271–288 | DOI | MR | Zbl
[18] R. Khokni, K. Dzhesskhoup, Parallelnye EVM, Radio i svyaz, M., 1986, 390 pp.
[19] H. Stone, “Parallel Tridiagonal Equation Solvers”, ACM Trans. Math., Softwere 1 (1975), 289–307 | DOI | MR | Zbl
[20] A. Dzhordzh, Dzh. Lyu, Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984, 334 pp. | MR
[21] N. N. Yanenko, A. N. Konovalov, A. N. Bugrov, G. V. Shustov, “Ob organizatsii parallelnykh vychislenii i rasparallelivanii progonki”, Chislennye metody mekhaniki sploshnoi sredy, 9, no. 7, VTs i ITiPM SO AN SSSR, Novosibirsk, 1978, 139–146
[22] E. N. Akimova, “Rasparallelivanie algoritma matrichnoi progonki”, Matematicheskoe modelirovanie, 6, no. 9, Nauka, M., 1994, 61–67 | MR
[23] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976, 663 pp. | MR
[24] V. V. Vasin, T. I. Serezhnikova, E. N. Akimova, Kompleks programm resheniya prostranstvennykh zadach uprugosti metodom granichnykh integralnykh uravnenii (MGIU-2), Otchet IMM UrO RAN, Ekaterinburg, 1996, 107 pp.
[25] L. B. Tsvik, “Obobschenie algoritma Shvartsa na sluchai oblastei, sopryazhennykh bez naleganiya”, DAN, 224:2 (1975), 309–312 | MR | Zbl
[26] V. V. Vasin, E. N. Akimova, “Parallelnye algoritmy resheniya trekhmernoi zadachi uprugosti”, Algoritmy i programmnye sredstva parallelnykh vychislenii, 3, Ekaterinburg, 1999, 34–47