Method of order equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulation of problems needs the knowledge of relative orders of perturbations. Therefore it is worth first to formulate and solve the problem on the level of exact orders of unknown quantities. Such a problem is simpler because it lays claim to a less information. And its solution enables us to formulate a well-founded problem on the level of asymptotic equality. We present this method in general case of the boundary problem for a system of quasilinear equations and demonstrate its application to some steady and unsteady problems of aerodynamics.
@article{DVMG_2001_2_2_a0,
     author = {R. G. Barantsev},
     title = {Method of order equations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a0/}
}
TY  - JOUR
AU  - R. G. Barantsev
TI  - Method of order equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 5
EP  - 9
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a0/
LA  - ru
ID  - DVMG_2001_2_2_a0
ER  - 
%0 Journal Article
%A R. G. Barantsev
%T Method of order equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 5-9
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a0/
%G ru
%F DVMG_2001_2_2_a0
R. G. Barantsev. Method of order equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 2, pp. 5-9. http://geodesic.mathdoc.fr/item/DVMG_2001_2_2_a0/

[1] R. G. Barantsev, I. A. Mikhailova, I. M. Tsitelov, “K opredeleniyu poryadka vozmuschayuschikh funktsii v metode malykh vozmuschenii”, Inzhen. zh-l, 1:2 (1961), 69–81 | MR | Zbl

[2] R. G. Barantsev, Lektsii po transzvukovoi gazodinamike, LGU, L., 1965, 216 pp. | MR

[3] R. G. Barantsev, Giperzvukovaya aerodinamika idealnogo gaza, LGU, L., 1983, 116 pp.

[4] R. G. Barantsev, S. B. Radzevich, “Asimptoticheskaya postanovka zadach o kolebaniyakh kryla v transzvukovom potoke na razlichnykh intervalakh chastot”, Asimptoticheskie metody v dinamike sistem, Irkutsk, 1985, 174–178

[5] S. B. Radzevich, “K zadache potentsialnogo obtekaniya tonkogo koleblyuschegosya profilya sverkhzvukovym potokom gaza”, Asimptoticheskie metody v teorii sistem, Irkutsk, 1990, 68–76

[6] A. O. Lyubin, “Opredelenie poryadkov vozmuschenii pri obtekanii tonkogo koleblyuschegosya profilya ravnomernym giperzvukovym potokom”, Asimptoticheskie metody v teorii sistem, Irkutsk, 1976, 118–132

[7] S. B. Radzevich, “K voprosu o nestatsionarnom obtekanii tonkogo profilya transzvukovym potokom gaza”, Asimptoticheskie metody v teorii sistem, Irkutsk, 1989, 191–202 | MR