The solvability of the nonstationary problem for the model system of the barotropic gas flows
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 37-52
Voir la notice de l'article provenant de la source Math-Net.Ru
Considered an approximate system Navier-Stokes equtions for the compressible viscous barotropic flows. The nonpotential flows are considered. The global existence of the weak solutions for the 3-dimensional problem is obtained. In the case the 2-dimensional the theorem of the existense and uniqueness is proved. The proof of main result is based on a new priori estimates.
@article{DVMG_2001_2_1_a2,
author = {E. V. Lukina},
title = {The solvability of the nonstationary problem for the model system of the barotropic gas flows},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {37--52},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a2/}
}
TY - JOUR AU - E. V. Lukina TI - The solvability of the nonstationary problem for the model system of the barotropic gas flows JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2001 SP - 37 EP - 52 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a2/ LA - ru ID - DVMG_2001_2_1_a2 ER -
E. V. Lukina. The solvability of the nonstationary problem for the model system of the barotropic gas flows. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 37-52. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a2/