Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2001_2_1_a11, author = {E. L. Yeremin and S. G. Samohvalova}, title = {Controlling a system with signal-parametrical adaptation and object compensator tuning}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {126--136}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a11/} }
TY - JOUR AU - E. L. Yeremin AU - S. G. Samohvalova TI - Controlling a system with signal-parametrical adaptation and object compensator tuning JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2001 SP - 126 EP - 136 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a11/ LA - ru ID - DVMG_2001_2_1_a11 ER -
%0 Journal Article %A E. L. Yeremin %A S. G. Samohvalova %T Controlling a system with signal-parametrical adaptation and object compensator tuning %J Dalʹnevostočnyj matematičeskij žurnal %D 2001 %P 126-136 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a11/ %G ru %F DVMG_2001_2_1_a11
E. L. Yeremin; S. G. Samohvalova. Controlling a system with signal-parametrical adaptation and object compensator tuning. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 126-136. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a11/
[1] A. L. Fradkov, Adaptivnoe upravlenie v slozhnykh sistemakh: bespoiskovye metody, Nauka, M., 1990, 296 pp. | MR | Zbl
[2] I. V. Miroshnik, V. O. Nikiforov, A. L. Fradkov, Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami, Nauka, SPb., 2000, 549 pp. | Zbl
[3] I. D. Landau, Adaptive control systems: the model reference approach, Marsel Dekker, N.Y., 1979, 406 pp. | MR | Zbl
[4] E. L. Eremin, A. M. Tsykunov, Sintez adaptivnykh sistem upravleniya na osnove kriteriya giperustoichivosti, Ilim, Bishkek, 1992, 182 pp.
[5] E. L. Eremin, S. G. Akilova, “Algoritmy samonastroiki lineinykh kompensatorov adaptivnykh sistem stabilizatsii s neyavnoi etalonnoi modelyu”, Vestnik IrGTU. Ser. Kibernetika, 1998, no. 1, 4–14, IrGTU, Irkutsk | MR
[6] E. L. Eremin, S. G. Akilova, “Adaptivnye kompensatory nestatsionarnykh sistem upravleniya s neyavnoi etalonnoi modelyu”, 6-i Sankt-Peterburgskii simpozium po teorii adaptivnykh sistem, Cb. trudov, Izd-vo ZAO “NPO Omega BF Omega”, SPb., 1999, 79–81
[7] V. M. Popov, Giperustoichivost avtomaticheskikh sistem, Nauka, M., 1970, 456 pp. | MR
[8] C. I. Byrnes, A. Isidori, J. C. Willems, “Passivity, feedback equivalence, and the global stabilization of minimal phase nonlinear systems”, IEEE Trans. Aut. Contr., AC-36:11 (1991), 1228–1240 | DOI | MR | Zbl
[9] A. L. Fradkov, I. G. Polushin, “Kvazidissipativnost i L-dissipativnost nelineinykh sistem”, DAN, 362:3 (1998), 319–322 | MR | Zbl
[10] I. G. Polushin, “Chastotnyi kriterii L-dissipativnosti nelineinykh sistem”, Izvestiya GETU. Optimizatsiya i adaptatsiya v upravlenii proizvodstvennymi protsessami, 519 (1998), 37–41, SPbGETU, SPb.
[11] I. G. Polushin, A. L. Fradkov, D. D. Khill, “Passivnost i passifikatsiya nelineinykh sistem”, AiT, 2000, no. 3, 3–37 | MR | Zbl
[12] I. G. Polushin, A. L. Fradkov, “Usloviya passivnosti i kvazipassivnosti v zadachakh sinteza nelineinykh sistem”, V sb. trudov, Mezhdunarodnaya konferentsiya po problemam upravleniya, 2, Izbrannye trudy, SINTEG, M., 1999, 120–127
[13] S. V. Emelyanov, S. L. Korovin, Novye tipy obratnoi svyazi: Upravlenie pri neopredelennosti, Nauka, M.; Fizmatlit, 1997, 352 pp. | MR
[14] A. L. Likhtarnikov, V. A. Yakubovich, “Absolyutnaya ustoichivost nelineinykh sistem”, Dopolnenie k knige: V. Rezvan, Absolyutnaya ustoichivost avtomaticheskikh sistem s posledeistviem, Nauka, M., 1983, 287–356 pp. | MR