Dynamics unstability in the mathematical model of salmon's populations number dynamics
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 114-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

Far East salmons are classical example of non-uniform populations. A discrete mathematical model of such populations number dynamics is suggested and investigated. Most particular cases are described in detail. The general algorithm for determine “bifurcation points” is worked out. The basic model was investigated by numerical methods for some real Pacific salmon's populations. Was found all possible variants of number changes and character of stability each of its. Was determined parameters which with population dynamics becomes chaotic.
@article{DVMG_2001_2_1_a10,
     author = {E. V. Last and S. P. Luppov and E. Ya. Frisman},
     title = {Dynamics unstability in the mathematical model of salmon's populations number dynamics},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {114--125},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a10/}
}
TY  - JOUR
AU  - E. V. Last
AU  - S. P. Luppov
AU  - E. Ya. Frisman
TI  - Dynamics unstability in the mathematical model of salmon's populations number dynamics
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 114
EP  - 125
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a10/
LA  - ru
ID  - DVMG_2001_2_1_a10
ER  - 
%0 Journal Article
%A E. V. Last
%A S. P. Luppov
%A E. Ya. Frisman
%T Dynamics unstability in the mathematical model of salmon's populations number dynamics
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 114-125
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a10/
%G ru
%F DVMG_2001_2_1_a10
E. V. Last; S. P. Luppov; E. Ya. Frisman. Dynamics unstability in the mathematical model of salmon's populations number dynamics. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 114-125. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a10/

[1] S. M. Konovalov, Populyatsionnaya biologiya tikhookeanskikh lososei, Nauka, L., 1980 | Zbl

[2] A. P. Shapiro, S. P. Luppov, Rekurrentnye uravneniya v teorii populyatsionnoi biologii, Nauka, M., 1982 | MR