On the solvability of boundary problems for stationary Navier-Stokes equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 16-36

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary value problems for Navier-Stokes equations describing the steady-state incompressible viscous homogeneous flow in bounded domain are considered. The boundary conditions are the boundary value of the total pressure, tangential and normal components of the flow velocity and vorticity. The unilateral boundary problems are also examined. The main aims of the paper are 1) to prove the solvability of nonhomogeneous boundary problems for any Reynold's number, 2) to prove the solvability of homogeneous boundary problems in case of the domain with piecewise smooth boundary.
@article{DVMG_2001_2_1_a1,
     author = {A. A. Illarionov},
     title = {On the solvability of boundary problems for stationary {Navier-Stokes} equations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {16--36},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - On the solvability of boundary problems for stationary Navier-Stokes equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 16
EP  - 36
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/
LA  - ru
ID  - DVMG_2001_2_1_a1
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T On the solvability of boundary problems for stationary Navier-Stokes equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 16-36
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/
%G ru
%F DVMG_2001_2_1_a1
A. A. Illarionov. On the solvability of boundary problems for stationary Navier-Stokes equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 16-36. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/