Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2001_2_1_a1, author = {A. A. Illarionov}, title = {On the solvability of boundary problems for stationary {Navier-Stokes} equations}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {16--36}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/} }
TY - JOUR AU - A. A. Illarionov TI - On the solvability of boundary problems for stationary Navier-Stokes equations JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2001 SP - 16 EP - 36 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/ LA - ru ID - DVMG_2001_2_1_a1 ER -
A. A. Illarionov. On the solvability of boundary problems for stationary Navier-Stokes equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 16-36. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/
[1] A. V. Kozhikhov, “Razreshimost nekotorykh kraevykh zadach dlya uravnenii Nave – Stoksa”, Dinamika sploshnoi sredy, no. 16, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1974, 5–13
[2] V. V. Ragulin, “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya ili napora”, Dinamika sploshnoi sredy, 27, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1976, 78–92 | MR
[3] S. N. Antontsev, A. V. Kozhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl
[4] A. Yu. Chebotarev, “Subdifferentsialnye kraevye zadachi dlya statsionarnykh uravnenii Nave – Stoksa”, Differents. uravneniya, 28:8 (1992), 1443–1450 | MR | Zbl
[5] A. Yu. Chebotarev, “Statsionarnye variatsionnye neravenstva v modeli neodnorodnoi zhidkosti”, Sib. matem. zhurn., 38:5 (1997), 1185–1193 | MR
[6] C. Conca, F. Murat, O. Pironneau, “The Stokes and Navier – Stokes equation with boundary conditions involving the pressure”, Japan J. Math., 20:2 (1994), 279–318 | MR | Zbl
[7] V. Girault, “Curl-conforming finite element methods for Navier – Stokes equations with nonstandard boundary conditions in $R^3$”, Proc. of the Oberwolfash Meeting on Navier – Stokes Equations and Numerical Methods, Lecture Notes in Mathematics, ed. R. Rautmann, Springer, 1990, 201–218 | MR
[8] A. A. Illarionov, “O regulyarnosti reshenii kraevoi i ekstremalnoi zadachi dlya uravnenii Nave – Stoksa”, Dalnevostochnyi matematicheskii sbornik, 8, 1999, 95–109
[9] A. A. Illarionov, A. Yu. Chebotarev, “O razreshimosti smeshannoi kraevoi zadachi dlya statsionarnykh uravnenii Nave – Stoksa”, Differents. uravneniya, 37:5 (2001), 689–695 | MR | Zbl
[10] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR
[11] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[12] O. Francu, “Monotone operators”, Aplicace Matematiky, 35:4 (1990), 257–301 | MR | Zbl
[13] D. Gilbarg, M. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[14] A. Bendali, J. M. Domingues, S. Gallic, “A Variational Approach for the Vector Potential Formulation of the Stokes and Navier – Stokes Problems in Three Dimentional Domains”, J. Math. Anal. Appl., 107 (1985), 537–560 | DOI | MR | Zbl
[15] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[16] V. P. Mikhailov, Uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl
[17] V. Girault, P. A. Raviart, Finite element methods for Navier – Stokes equations, Springer Verlag, New York, 1986 | MR | Zbl
[18] R. Temam, Uravneniya Nave – Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl