On the solvability of boundary problems for stationary Navier-Stokes equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 16-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary value problems for Navier-Stokes equations describing the steady-state incompressible viscous homogeneous flow in bounded domain are considered. The boundary conditions are the boundary value of the total pressure, tangential and normal components of the flow velocity and vorticity. The unilateral boundary problems are also examined. The main aims of the paper are 1) to prove the solvability of nonhomogeneous boundary problems for any Reynold's number, 2) to prove the solvability of homogeneous boundary problems in case of the domain with piecewise smooth boundary.
@article{DVMG_2001_2_1_a1,
     author = {A. A. Illarionov},
     title = {On the solvability of boundary problems for stationary {Navier-Stokes} equations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {16--36},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - On the solvability of boundary problems for stationary Navier-Stokes equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2001
SP  - 16
EP  - 36
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/
LA  - ru
ID  - DVMG_2001_2_1_a1
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T On the solvability of boundary problems for stationary Navier-Stokes equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2001
%P 16-36
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/
%G ru
%F DVMG_2001_2_1_a1
A. A. Illarionov. On the solvability of boundary problems for stationary Navier-Stokes equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 2 (2001) no. 1, pp. 16-36. http://geodesic.mathdoc.fr/item/DVMG_2001_2_1_a1/

[1] A. V. Kozhikhov, “Razreshimost nekotorykh kraevykh zadach dlya uravnenii Nave – Stoksa”, Dinamika sploshnoi sredy, no. 16, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1974, 5–13

[2] V. V. Ragulin, “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya ili napora”, Dinamika sploshnoi sredy, 27, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1976, 78–92 | MR

[3] S. N. Antontsev, A. V. Kozhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl

[4] A. Yu. Chebotarev, “Subdifferentsialnye kraevye zadachi dlya statsionarnykh uravnenii Nave – Stoksa”, Differents. uravneniya, 28:8 (1992), 1443–1450 | MR | Zbl

[5] A. Yu. Chebotarev, “Statsionarnye variatsionnye neravenstva v modeli neodnorodnoi zhidkosti”, Sib. matem. zhurn., 38:5 (1997), 1185–1193 | MR

[6] C. Conca, F. Murat, O. Pironneau, “The Stokes and Navier – Stokes equation with boundary conditions involving the pressure”, Japan J. Math., 20:2 (1994), 279–318 | MR | Zbl

[7] V. Girault, “Curl-conforming finite element methods for Navier – Stokes equations with nonstandard boundary conditions in $R^3$”, Proc. of the Oberwolfash Meeting on Navier – Stokes Equations and Numerical Methods, Lecture Notes in Mathematics, ed. R. Rautmann, Springer, 1990, 201–218 | MR

[8] A. A. Illarionov, “O regulyarnosti reshenii kraevoi i ekstremalnoi zadachi dlya uravnenii Nave – Stoksa”, Dalnevostochnyi matematicheskii sbornik, 8, 1999, 95–109

[9] A. A. Illarionov, A. Yu. Chebotarev, “O razreshimosti smeshannoi kraevoi zadachi dlya statsionarnykh uravnenii Nave – Stoksa”, Differents. uravneniya, 37:5 (2001), 689–695 | MR | Zbl

[10] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[11] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[12] O. Francu, “Monotone operators”, Aplicace Matematiky, 35:4 (1990), 257–301 | MR | Zbl

[13] D. Gilbarg, M. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[14] A. Bendali, J. M. Domingues, S. Gallic, “A Variational Approach for the Vector Potential Formulation of the Stokes and Navier – Stokes Problems in Three Dimentional Domains”, J. Math. Anal. Appl., 107 (1985), 537–560 | DOI | MR | Zbl

[15] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[16] V. P. Mikhailov, Uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[17] V. Girault, P. A. Raviart, Finite element methods for Navier – Stokes equations, Springer Verlag, New York, 1986 | MR | Zbl

[18] R. Temam, Uravneniya Nave – Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl