Non-linear free flexural oscillations thin circle cylindrical shells
Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 102-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The oscillations with large amplitudes jointly supported on tip of a circle cylindrical shell of finite length are studied. The mathematical model is established on equations of the non-linear theory of pliable shallow shells. Four versions of tangential fastening of tip of a shell are considered which, as against other known solutions, are satisfied precisely. The modal equations were obtained by a method of Boobnov-Galerkin. The periodic solutions were retrieved by a method Krylov-Bogolyubov. Obtained, that the “averaging” satisfaction of tangential bounder conditions, results in an essential error at definition of dynamic characteristics of a shell of finite length. Shown, that irrespective of a way of tangential fastening of tip of a shell, the single mode of motion is characterized by a skeletal curve of a soft type. This conclusion is qualitatively agreed with known experimental data.
@article{DVMG_2000_1_1_a12,
     author = {N. A. Taranukha and G. S. Leyzerovich},
     title = {Non-linear free flexural oscillations thin circle cylindrical shells},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {102--110},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a12/}
}
TY  - JOUR
AU  - N. A. Taranukha
AU  - G. S. Leyzerovich
TI  - Non-linear free flexural oscillations thin circle cylindrical shells
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2000
SP  - 102
EP  - 110
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a12/
LA  - ru
ID  - DVMG_2000_1_1_a12
ER  - 
%0 Journal Article
%A N. A. Taranukha
%A G. S. Leyzerovich
%T Non-linear free flexural oscillations thin circle cylindrical shells
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2000
%P 102-110
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a12/
%G ru
%F DVMG_2000_1_1_a12
N. A. Taranukha; G. S. Leyzerovich. Non-linear free flexural oscillations thin circle cylindrical shells. Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 102-110. http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a12/

[1] D. A. Evensen, “Nelineinye kolebaniya krugovykh tsilindricheskikh obolochek”, Tonkostennye obolochechnye konstruktsii, Mashinostroenie, M., 1980, 156–176

[2] V. D. Kubenko, P. S. Kovalchuk, T. S. Krasnopolskaya, Nelineinoe vzaimodeistvie form izgibnykh kolebanii tsilindricheskikh obolochek, Nauk. dumka, Kiev, 1984 | Zbl

[3] T. K. Varadan, Dzh. Pratkhap, Kh. V. Ramani, “Nelineinye svobodnye izgibnye kolebaniya tonkostennykh krugovykh tsilindricheskikh obolochek”, Aerokosmicheskaya tekhnika, 1990, no. 5, 21–24

[4] E. V. Ladygina, A. I. Manevich, “Nelineinye svobodnye izgibnye kolebaniya tsilindricheskoi obolochki s uchetom vzaimodeistviya sopryazhennykh form”, Izv. AN MTT, 1977, no. 3, 169–175

[5] G. S. Leizerovich, “O formakh kolebanii tonkostennykh krugovykh tsilindricheskikh obolochek”, Problemy mekhaniki sploshnykh sred, Materialy trudov mezhd. nauch.-tekhn. konf., Ch. 1, KnAGTU, Komsomolsk-na-Amure, 1998, 53–55

[6] A. S. Volmir, Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972 | MR