On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity
Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 8-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper is considered nonlinear difference equation with initial condition. There is studied behavior of some characteristic of the problem by parameter tending to infinity.
@article{DVMG_2000_1_1_a1,
     author = {V. I. Biderman},
     title = {On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {8--15},
     year = {2000},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a1/}
}
TY  - JOUR
AU  - V. I. Biderman
TI  - On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2000
SP  - 8
EP  - 15
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a1/
LA  - ru
ID  - DVMG_2000_1_1_a1
ER  - 
%0 Journal Article
%A V. I. Biderman
%T On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2000
%P 8-15
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a1/
%G ru
%F DVMG_2000_1_1_a1
V. I. Biderman. On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity. Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 8-15. http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a1/

[1] A. D. Gorbunov, Raznostnye uravneniya i raznostnye metody resheniya zadachi Koshi dlya sistemy obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1967, 113 pp.

[2] V. A. Ivanov i dr., Matematicheskie osnovy teorii matematicheskogo regulirovaniya, Vyssh. shk., M., 1971, 807 pp. | Zbl

[3] V. A. Yakubovich, “Absolyutnaya ustoichivost impulsnykh sistem s neskolkimi nelineinymi i lineinymi statsionarnymi blokami. II”, AiT, 1968, no. 2, 81–101 | MR | Zbl

[4] A. Khalanai, D. Veksler, Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971, 309 pp. | MR

[5] M. I. Gil, Metod operatornykh funktsii v teorii differentsialnykh uravnenii, Nauka, M., 1990, 160 pp. | MR | Zbl

[6] I. D. Martynyuk, Lektsii po kachestvennoi teorii differentsialnykh uravnenii, Naukova dumka, Kiev, 1972, 248 pp.

[7] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979, 587 pp. | MR

[8] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 536 pp. | MR

[9] A. O. Gelfond, Ischislenie konechnykh raznostei, Nauka, M., 1967, 375 pp. | MR

[10] A. M. Rodionov, “Nekotorye modifikatsii teorem vtorogo metoda Lyapunova dlya diskretnykh uravnenii”, AiT, 1992, no. 9, 86–93 | MR | Zbl

[11] V. M. Kuntsevich, V. G. Pokotilo, “Ustoichivost invariantnykh mnozhestv nelineinykh diskretnykh sistem”, PMM, 58:5 (1994), 59–67 | MR | Zbl

[12] A. V. Lasunskii, “K teorii ustoichivosti lineinykh sistem raznostnykh uravnenii”, Differents. uravneniya, 34:4 (1998), 567–569 | MR

[13] N. A. Bobylev, A. V. Butalov, “O robastnoi ustoichivosti lineinykh diskretnykh sistem”, AiT, 1998, no. 8, 138–145 | MR | Zbl