On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity
Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 8-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper is considered nonlinear difference equation with initial condition. There is studied behavior of some characteristic of the problem by parameter tending to infinity.
@article{DVMG_2000_1_1_a1,
     author = {V. I. Biderman},
     title = {On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {8--15},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a1/}
}
TY  - JOUR
AU  - V. I. Biderman
TI  - On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2000
SP  - 8
EP  - 15
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a1/
LA  - ru
ID  - DVMG_2000_1_1_a1
ER  - 
%0 Journal Article
%A V. I. Biderman
%T On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2000
%P 8-15
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a1/
%G ru
%F DVMG_2000_1_1_a1
V. I. Biderman. On a estimate of solutions of difference equations with stationary linear part and with scalar nonlinearity. Dalʹnevostočnyj matematičeskij žurnal, Tome 1 (2000) no. 1, pp. 8-15. http://geodesic.mathdoc.fr/item/DVMG_2000_1_1_a1/

[1] A. D. Gorbunov, Raznostnye uravneniya i raznostnye metody resheniya zadachi Koshi dlya sistemy obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1967, 113 pp.

[2] V. A. Ivanov i dr., Matematicheskie osnovy teorii matematicheskogo regulirovaniya, Vyssh. shk., M., 1971, 807 pp. | Zbl

[3] V. A. Yakubovich, “Absolyutnaya ustoichivost impulsnykh sistem s neskolkimi nelineinymi i lineinymi statsionarnymi blokami. II”, AiT, 1968, no. 2, 81–101 | MR | Zbl

[4] A. Khalanai, D. Veksler, Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971, 309 pp. | MR

[5] M. I. Gil, Metod operatornykh funktsii v teorii differentsialnykh uravnenii, Nauka, M., 1990, 160 pp. | MR | Zbl

[6] I. D. Martynyuk, Lektsii po kachestvennoi teorii differentsialnykh uravnenii, Naukova dumka, Kiev, 1972, 248 pp.

[7] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979, 587 pp. | MR

[8] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 536 pp. | MR

[9] A. O. Gelfond, Ischislenie konechnykh raznostei, Nauka, M., 1967, 375 pp. | MR

[10] A. M. Rodionov, “Nekotorye modifikatsii teorem vtorogo metoda Lyapunova dlya diskretnykh uravnenii”, AiT, 1992, no. 9, 86–93 | MR | Zbl

[11] V. M. Kuntsevich, V. G. Pokotilo, “Ustoichivost invariantnykh mnozhestv nelineinykh diskretnykh sistem”, PMM, 58:5 (1994), 59–67 | MR | Zbl

[12] A. V. Lasunskii, “K teorii ustoichivosti lineinykh sistem raznostnykh uravnenii”, Differents. uravneniya, 34:4 (1998), 567–569 | MR

[13] N. A. Bobylev, A. V. Butalov, “O robastnoi ustoichivosti lineinykh diskretnykh sistem”, AiT, 1998, no. 8, 138–145 | MR | Zbl