Linear hashing in the Boolean cube with clusters of limited size
Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 124-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that for an arbitrary $M$-element subset of the Boolean $n$-cube there exists a linear hash function with clusters consisting of at most $a$ elements and with a rank at most $2\log_2 M-2\log_2 a+\mathcal O(1)$.
Keywords: Boolean $n$-cube, linear Boolean hash functions, cluster.
@article{DM_2024_36_2_a7,
     author = {A. V. Chashkin},
     title = {Linear hashing in the {Boolean} cube with clusters of limited size},
     journal = {Diskretnaya Matematika},
     pages = {124--131},
     year = {2024},
     volume = {36},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_2_a7/}
}
TY  - JOUR
AU  - A. V. Chashkin
TI  - Linear hashing in the Boolean cube with clusters of limited size
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 124
EP  - 131
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_2_a7/
LA  - ru
ID  - DM_2024_36_2_a7
ER  - 
%0 Journal Article
%A A. V. Chashkin
%T Linear hashing in the Boolean cube with clusters of limited size
%J Diskretnaya Matematika
%D 2024
%P 124-131
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/DM_2024_36_2_a7/
%G ru
%F DM_2024_36_2_a7
A. V. Chashkin. Linear hashing in the Boolean cube with clusters of limited size. Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 124-131. http://geodesic.mathdoc.fr/item/DM_2024_36_2_a7/

[1] Chashkin A. V., “O lineinykh operatorakh, in'ektivnykh na proizvolnykh podmnozhestvakh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156:3 (2014), 132–141