Linear hashing in the Boolean cube with clusters of limited size
Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 124-131
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that for an arbitrary $M$-element subset of the Boolean $n$-cube there exists a linear hash function with clusters consisting of at most $a$ elements and with a rank at most $2\log_2 M-2\log_2 a+\mathcal O(1)$.
Keywords:
Boolean $n$-cube, linear Boolean hash functions, cluster.
@article{DM_2024_36_2_a7,
author = {A. V. Chashkin},
title = {Linear hashing in the {Boolean} cube with clusters of limited size},
journal = {Diskretnaya Matematika},
pages = {124--131},
year = {2024},
volume = {36},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2024_36_2_a7/}
}
A. V. Chashkin. Linear hashing in the Boolean cube with clusters of limited size. Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 124-131. http://geodesic.mathdoc.fr/item/DM_2024_36_2_a7/
[1] Chashkin A. V., “O lineinykh operatorakh, in'ektivnykh na proizvolnykh podmnozhestvakh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156:3 (2014), 132–141