On sample-based estimation of the Rényi entropy of finite probabilistic schemes
Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 117-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the $\alpha$-entropy of finite probability schemes proposed by A. Renyi (1961) as a measure of uncertainty (ramdomness). Two new limit theorems are presented for sampling estimation of the entropy of the Renyi sequence of independent polynomials test.
Keywords: probabilistic scheme, entropy, entropy Renyi, sampling estimation, limit theorem.
@article{DM_2024_36_2_a6,
     author = {B. I. Selivanov},
     title = {On sample-based estimation of the {R\'enyi} entropy of finite probabilistic schemes},
     journal = {Diskretnaya Matematika},
     pages = {117--123},
     year = {2024},
     volume = {36},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_2_a6/}
}
TY  - JOUR
AU  - B. I. Selivanov
TI  - On sample-based estimation of the Rényi entropy of finite probabilistic schemes
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 117
EP  - 123
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_2_a6/
LA  - ru
ID  - DM_2024_36_2_a6
ER  - 
%0 Journal Article
%A B. I. Selivanov
%T On sample-based estimation of the Rényi entropy of finite probabilistic schemes
%J Diskretnaya Matematika
%D 2024
%P 117-123
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/DM_2024_36_2_a6/
%G ru
%F DM_2024_36_2_a6
B. I. Selivanov. On sample-based estimation of the Rényi entropy of finite probabilistic schemes. Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 117-123. http://geodesic.mathdoc.fr/item/DM_2024_36_2_a6/

[1] Shannon C. E., “A mathematical theory of communications”, Bell Syst. Tech. J., 27:3,4 (1948), 379–423, 623–656 | DOI | MR | Zbl

[2] Shennon K., “Matematicheskaya teoriya svyazi”, Paboty po teorii informatsii i kibernetike, IL, M., 1963, 243–332

[3] Esteban M. D., Morales D., “A summary on entropy statistics”, Kybernetika, 31:4 (1995), 337–346 | MR | Zbl

[4] Rényi A., “On measures of entropy and information”, Proc. 4th Berkeley Symp., v. 1, Univ. of California Press, 1961, 547–561 | MR

[5] Rényi A., “On the foundation of information theory”, Rev. Inst. Internat. Sci., 33:1 (1965), 1–14 | MR

[6] Campbell L., “A coding theorem and Rényi entropy”, Inf. Contr., 8:4 (1965), 423–429 | DOI | MR | Zbl

[7] Csiszar I., “Generalized cutoff rates and Rényi information measures”, IEEE Trans. Inf. Theory, 41:1 (1995), 26–34 | DOI | MR | Zbl

[8] Song K.-S., “Rényi information, and an intrinsic distribution measure”, J. Statist. Plann. Infer., 93:1 (2001), 51–68 | DOI | MR

[9] Oorschot P. C., Wiener M. J., “Parallel collision search with cryptanalytic applications”, J. Cryptology, 12:1 (1999), 1–28 | DOI | MR | Zbl

[10] Polukha V. Yu., Kharin Yu. S., “Entropiinye funktsionaly Reni i Tsalisa v zadachakh zaschity informatsii”, Tekhnologii informatizatsii i upravleniya, v. 1, RIVSh, Minsk, 2017, 76–80

[11] Polukha V. Yu., “Statisticheskie testy na osnove entropii dlya proverki gipotez o ravnomernom raspredelenii sluchainoi posledovatelnosti”, Izv. Nats. AN Belarusi, ser. fiz.-matem. n., 2017, 79–88

[12] Shaltiel R, “Recent developments in explicit constructions of extractors”, Bull. Europ. Assoc. Theor. Comp. Sci., 77 (2002), 67–95 | MR | Zbl

[13] Basharin G. P., “O statisticheskoi otsenke entropii posledovatelnosti nezavisimykh sluchainykh velichin.”, Teoriya veroyatn. i ee primen., 4:3 (1959), 361–364 | MR | Zbl

[14] Zubkov A. M., “Predelnye raspredeleniya statisticheskoi otsenki entropii”, Teoriya veroyatn. i ee primen., 18:3 (1973), 643–650 | Zbl

[15] Mukhamedkhanova R., “Ob asimptoticheskom povedenii raspredeleniya statisticheskoi otsenki entropii”, Dokl. AN UzSSR, 1980, no. 4, 3–4 | Zbl

[16] Vatutin V. A., Mikhailov V. G., “Statisticheskoe otsenivanie entropii diskretnykh sluchainykh velichin s bolshim chislom iskhodov”, Uspekhi matem. nauk, 50:5(305) (1995), 121–134 | MR | Zbl

[17] Dyachkov A. G., “Asimptotika entropii Shennona dlya summy nezavisimykh sluchainykh velichin”, Fundament. i priklad. matem., 2:4 (1996), 1019–1028 | MR | Zbl

[18] Vilenkin P. A., Dyachkov A. G., “Asimptotika entropii Shennona i Reni dlya summ nezavisimykh sluchainykh velichin”, Probl. peredachi inform., 34:3 (1998), 17–31 | MR | Zbl

[19] Paninski L., “Estimation of entropy and mutual information”, Neural Computation, 15 (2003), 1191–1253 | DOI | Zbl

[20] Acharya J., Orlitsky A., Suresh A. T., Tyago H., “Estimatig Rényi entropy of discrete distribution”, IEEE Trans. Inf. Theory, 63:1 (2017), 38–56 | DOI | MR | Zbl

[21] Källberg D., Leonenko N., Seleznjev O., Statistical inference for Rényi functionals, 2011, 15 pp., arXiv: math.ST/1103.4977v1 | MR

[22] Zvárova J., “On asymptotic behaviour of a sample estimator of Rényi's information of order $\alpha$”, Trans. Sixth Prague Conf. on Inform. Theory, Dec. Func. and Rand. Proc., Czech. Acad. of Sci., Prague, 1973, 919–924 | MR

[23] Rao S. R., Lineinye statisticheskie metody i ikh primeneniya, Nauka, M., 1968, 548 pp.

[24] Kramer G., Matematicheskie metody statistiki, Gos. izd. IL, M., 1948, 632 pp.

[25] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 1, Gos. izd. tekhn.-teor. lit., M., 1956, 396 pp. | MR

[26] Selivanov B. I., “Ob odnom klasse statistik polinomialnykh vyborok”, Diskretnaya matematika, 21:2 (2009), 126–137 | DOI | Zbl

[27] Selivanov B. I., “Ob odnom klasse statistik tipa khi-kvadrat”, Obozr. prikl. promyshl. matem., 2:6 (1995), 926–966

[28] Gaek Ya., Shidak Z., Teoriya rangovykh kriteriev, Nauka, M., 376 pp.

[29] Kudryavtsev L. D., Kurs matematicheskogo analiza, v. 2, Drofa, M., 1982, 720 pp.

[30] Ivchenko G. I., Medvedev Yu. I., Vvedenie v matematicheskuyu statistiku, LKI, M., 2010, 599 pp. | MR