The limit joint distributions of statistics of tests of the NIST package and their generalizations
Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 71-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The limiting joint distribution of statistics, that are generalizations of statistics of tests of the NIST package and other packages, is obtained under the following hypotheses $H_0$ and $H_1$. The hypothesis $H_0$ is that the test sequence consists of independent random variables with a given polynomial distribution, and the alternative hypothesis $H_1$ corresponds to a scheme of trials in which the distribution of the test sequence approaches its distribution at $H_0$. An example of the hypothesis $H_1$ is the Markov alternative of a special form. In the special case when $H_0$ corresponds to a sequence of independent Bernoulli trials with parameter $\frac12$ and when $H_1$ approaches $H_0$, the results obtained allow us to find the limiting joint distributions of statistics of the following nine tests of the NIST package: «Monobit Test» , «Frequency Test within a Block», «Runs Test», «Test for the Longest Run of Ones in a Block», «Binary Matrix Rank Test», «Non-overlapping Template Matching Test », «Linear Complexity Test», «Serial Test» and «Approximate Entropy Test», as well as their generalizations, under hypotheses $H_0$ and $H_1$.
Keywords: joint distribution of statistical tests, «Frequency Test within a Block», «Test for the Longest Run of Ones in a Block», asymptotically uncorrelated statistics, asymptotically independent statistics.
Mots-clés : NIST, «Monobit Test»
@article{DM_2024_36_2_a5,
     author = {M. P. Savelov},
     title = {The limit joint distributions of statistics of tests of the {NIST} package and their generalizations},
     journal = {Diskretnaya Matematika},
     pages = {71--116},
     year = {2024},
     volume = {36},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_2_a5/}
}
TY  - JOUR
AU  - M. P. Savelov
TI  - The limit joint distributions of statistics of tests of the NIST package and their generalizations
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 71
EP  - 116
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_2_a5/
LA  - ru
ID  - DM_2024_36_2_a5
ER  - 
%0 Journal Article
%A M. P. Savelov
%T The limit joint distributions of statistics of tests of the NIST package and their generalizations
%J Diskretnaya Matematika
%D 2024
%P 71-116
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/DM_2024_36_2_a5/
%G ru
%F DM_2024_36_2_a5
M. P. Savelov. The limit joint distributions of statistics of tests of the NIST package and their generalizations. Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 71-116. http://geodesic.mathdoc.fr/item/DM_2024_36_2_a5/

[1] Rukhin A., Soto J., Nechvatal J., Smid M., Barker E., Leigh S., Levenson M., Vangel M., Banks D., Heckert A., Dray J., Vo S., A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22 Revision 1a, 2010

[2] Serov A. A., “Formuly dlya chisel posledovatelnostei, soderzhaschikh zadannyi shablon zadannoe chislo raz”, Diskretnaya matematika, 32:4 (2020), 120–136 | DOI

[3] Zubkov A. M., Serov A. A., “A natural approach to the experimental study of dependence between statistical tests”, Matem. vopr. kriptogr., 12:1 (2021), 131–142 | DOI | MR | Zbl

[4] Zubkov A. M., Serov A. A., “Testing the NIST Statistical Test Suite on artificial pseudorandom sequences”, Matem. vopr. kriptogr., 10:2 (2019), 89–96 | DOI | MR | Zbl

[5] Zubkov A. M., Serov A. A., “Experimental study of NIST Statistical Test Suite ability to detect long repetitions in binary sequences”, Matem. vopr. kriptogr., 14:2 (2023), 137–145 | DOI | MR

[6] Sulak F., Doǧanaksoy A., Uǧuz M., Koçak O., “Periodic template tests: A family of statistical randomness tests for a collection of binary sequences”, Discr. Appl. Math., 271 (2019), 191–204 | DOI | MR | Zbl

[7] Georgescu C., Simion E., “New results concerning the power of NIST randomness tests”, Proc. Romanian acad., ser. A., 18 (2017), 381–388 | MR

[8] Burciu P., Simion E., “A systematic approach of NIST statistical tests dependencies”, J. Electr. Eng., Electronics, Control and Comput. Sci., 5:15 (2019), 1–6

[9] Ryabko B. Ya., Pestunov A. I., “«Stopka knig» kak novyi statisticheskii test dlya sluchainykh chisel”, Probl. peredachi inform., 40:1 (2004), 73–78 | MR | Zbl

[10] Rukhin A. L., “Approximate entropy for testing randomness”, J. Appl. Prob., 37:1 (2000), 88–100 | DOI | MR | Zbl

[11] Karell-Albo J. A., Legón-Pérez C. M., Madarro-Capó E. J., Rojas O., Sosa-Gómez G., “Measuring independence between statistical randomness tests by mutual information”, Entropy, 22:7 (2020), 1–18 | DOI | MR

[12] Maltsev M. V., Kharin Yu. S., “O testirovanii vykhodnykh posledovatelnostei kriptograficheskikh generatorov na osnove tsepei Markova uslovnogo poryadka”, Informatika, 4 (2013), 104–111

[13] Kievets N. G., Korzun A. I., “Sravnenie statistik testov serii i approksimirovannoi entropii”, Doklady BGUIR, 3 (2014), 12–17

[14] A. L. Rukhin, “Testing randomness: a suite of statistical procedures”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 137–162 | DOI | MR | Zbl

[15] Voloshko V. A., “Ob asimptoticheskikh svoistvakh semeistva $\chi^2$-testov chistoi sluchainosti dvoichnoi posledovatelnosti”, Teoreticheskaya i prikladnaya kriptografiya: materialy II Mezhdunar. nauch. konf. (Minsk, 19–20 okt. 2023 g., Belorus. gos. un-t), eds. redkol.: Yu. S. Kharin (gl. red.) [i dr.], BGU, Minsk, 2023, 15–43

[16] Maltsev M. V., Kharin Yu. S., “O statisticheskom otsenivanii mnogomernoi entropii dlya proverki kachestva kriptograficheskikh generatorov”, Teoreticheskaya i prikladnaya kriptografiya: materialy II Mezhdunar. nauch. konf. (Minsk, 19–20 okt. 2023 g., Belorus. gos. un-t), eds. redkol.: Yu. S. Kharin (gl. red.) [i dr.], BGU, Minsk, 2023, 140–147

[17] Palukha V. Yu., Kharin Yu. S., “Statisticheskoe testirovanie kriptograficheskikh generatorov na osnove slozhnoi nulevoi gipotezy”, Teoreticheskaya i prikladnaya kriptografiya: materialy II Mezhdunar. nauch. konf. (Minsk, 19–20 okt. 2023 g., Belorus. gos. un-t), eds. redkol.: Yu. S. Kharin (gl. red.) [i dr.], BGU, Minsk, 2023, 185–193

[18] Kharin Yu. S., “Statisticheskaya proverka slozhnykh gipotez ob $s$-mernom ravnomernom raspredelenii veroyatnostei dvoichnykh posledovatelnostei”, Teoreticheskaya i prikladnaya kriptografiya: materialy II Mezhdunar. nauch. konf. (Minsk, 19–20 okt. 2023 g., Belorus. gos. un-t), eds. redkol.: Yu. S. Kharin (gl. red.) [i dr.], Minsk, BGU, 2023, 261–270

[19] Voloshko V. A., Trubei A. I., “O moschnosti testov mnogomernoi diskretnoi ravnomernosti, ispolzuemykh dlya statisticheskogo analiza generatorov sluchainykh posledovatelnostei”, Zhurn. Belorus. gos. un-ta. Matem. Inf., 1 (2022), 26–37 | MR

[20] Voloshko V. A., Kharin Yu. S., Trubey A. I., “On power comparison for some tests on pure randomness under Markov high-order dependencies”, Computer Data Analysis and Modeling: Stochastics and Data Science: Proc. of the XIII Intern. Conf., 2022, 211–217

[21] Savelov M. P., “Predelnye sovmestnye raspredeleniya statistik chetyrekh kriteriev paketa NIST”, Diskretnaya matematika, 33:2 (2021), 141–154 | DOI

[22] Savelov M. P., “Predelnye sovmestnye raspredeleniya statistik trekh kriteriev paketa NIST”, Diskretnaya matematika, 33:3 (2021), 92–106 | DOI

[23] Savelov M. P., “Predelnaya teorema dlya sglazhennogo varianta spektralnogo kriteriya ravnoveroyatnosti dvoichnoi posledovatelnosti”, Diskretnaya matematika, 33:4 (2021), 132–140 | DOI | MR

[24] Savelov M. P., “Predelnoe sovmestnoe raspredelenie statistik kriteriev «Monobit test», «Frequency Test within a Block» i «Test for the Longest Run of Ones in a Block>”, Diskretnaya matematika, 34:3 (2022), 70–84 | DOI

[25] Savelov M. P., “Predelnoe sovmestnoe raspredelenie statistik kriteriev «Monobit test», «Frequency Test within a Block» i «Binary Matrix Rank Test»”, Diskretnaya matematika, 34:4 (2022), 84–98 | DOI | MR

[26] Savelov M. P., “Predelnoe sovmestnoe raspredelenie statistik kriteriev «Monobit test», «Frequency Test within a Block» i obobscheniya kriteriya «Serial Test»”, Diskretnaya matematika, 35:1 (2023), 88–106 | DOI | MR

[27] Savelov M. P., “Predelnoe sovmestnoe raspredelenie statistik kriteriev paketa NIST «Monobit Test», «Frequency Test within a Block» i obobscheniya kriteriya «Approximate Entropy Test»”, Diskretnaya matematika, 35:2 (2023), 93–108 | DOI

[28] Savelov M. P., “Predelnoe sovmestnoe raspredelenie statistik kriteriev priblizhennoi $\phi$-entropii”, Diskretnaya matematika, 35:3 (2023), 60–70 | DOI | MR

[29] Savelov M. P., “Moschnost kriteriya, osnovannogo na odnovremennom primenenii «Monobit Test», «Frequency Test within a Block» i «Serial Test»”, Diskretnaya matematika, 35:4 (2023), 79–114 | DOI | MR

[30] Savelov M. P., “Moschnost kriteriya, osnovannogo na odnovremennom primenenii «Monobit Test», «Frequency Test within a Block» i obobscheniya kriteriya «Approximate Entropy Test»”, Diskretnaya matematika, 36:1 (2024), 67–102 | DOI | MR

[31] Selivanov B. I., Chistyakov V. P., “Posledovatelnyi $\chi^2$-kriterii, postroennyi po $s$-tsepochkam sostoyanii tsepi Markova”, Diskretnaya matematika, 9:4 (1997), 127–136 | DOI | MR | Zbl

[32] Rukhin A. L., “Korrelyatsionnye matritsy tsepochek dlya markovskikh posledovatelnostei i testirovanie sluchainosti”, Teoriya veroyatn. i ee primen., 51:4 (2006), 712–731 | DOI | MR

[33] Ivchenko G. I., Medvedev Yu. I., Matematicheskaya statistika: Ucheb. posobie dlya vtuzov., Vysshaya shkola, M., 1984, 248 pp. | MR

[34] Knut D. E., Iskusstvo programmirovaniya, Poluchislennye algoritmy, v. 2, Vilyams, M., 2018, 832 pp. | MR

[35] Gustafson H., Dawson E., Nielsen L., Caelli W., “A computer package for measuring the strength of encryption algorithms”, Comp. Security, 13 (1994), 687–697 | DOI

[36] Security Requirements for Cryptographic Modules, FIPS PUB 140-1, National Institute of Standards and Technology, 1994

[37] L'Ecuyer P., Simard R., “TestU01: A C library for empirical testing of random number generators”, ACM Trans. Math. Soft., 33:22 (2007), 1–40 | DOI | MR

[38] L'Ecuyer P., Simard R., TestU01. A Software Library in ANSI C for Empirical Testing of Random Number Generators, User's guide, compact version, 2013 | Zbl

[39] Rueppel R. A., Analysis and Design of Stream Ciphers, Springer, 1986, 244 pp. | MR | Zbl