Mots-clés : Fourier coefficients.
@article{DM_2024_36_2_a4,
author = {V. G. Ryabov},
title = {Nonlinearity of vectorial functions over finite fields},
journal = {Diskretnaya Matematika},
pages = {50--70},
year = {2024},
volume = {36},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2024_36_2_a4/}
}
V. G. Ryabov. Nonlinearity of vectorial functions over finite fields. Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 50-70. http://geodesic.mathdoc.fr/item/DM_2024_36_2_a4/
[1] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl
[2] Gorshkov S. P., Dvinyaninov A. V., “Nizhnyaya i verkhnyaya otsenki poryadka affinnosti preobrazovanii prostranstv bulevykh vektorov”, Prikl. diskr. matem., 2013, no. 2(20), 14–18 | Zbl
[3] Ryabov V. G., “Kriterii maksimalnoi nelineinosti funktsii nad konechnym polem”, Diskretnaya matematika, 33:3 (2021), 79–91 | DOI | MR
[4] Ryabov V. G., “Nelineinost funktsii nad konechnymi polyami”, Diskretnaya matematika, 33:4 (2021), 110–131 | DOI | MR
[5] Ryabov V. G., “O priblizhenii vektornykh funktsii nad konechnymi polyami i ikh ogranichenii na lineinye mnogoobraziya affinnymi analogami”, Diskretnaya matematika, 34:2 (2022), 83–105 | DOI
[6] Ryabov V. G., “K voprosu o priblizhenii vektornykh funktsii nad konechnymi polyami affinnymi analogami”, Matematicheskie voprosy kriptografii, 13:4 (2022), 125–146 | DOI | MR | Zbl
[7] Ryabov V. G., “O chisle podstanovok vektornogo prostranstva nad konechnym polem, imeyuschikh affinnye priblizheniya zadannoi tochnosti”, Mater. XIV Mezhdunar. seminara «Diskretnaya matematika i ee prilozheniya» im. akademika O. B. Lupanova, IPM im. M.V. Keldysha RAN, 2022, 276–279
[8] Ryabov V. G., “Novye granitsy nelineinosti $\mathrm{PN}$-funktsii i $\mathrm{APN}$-funktsii nad konechnymi polyami”, Diskretnaya matematika, 35:3 (2023), 45–59 | DOI
[9] Ryabov V. G., “Udalennost vektornykh bulevykh funktsii ot affinnykh analogov (po sledam Vosmoi mezhdunarodnoi olimpiady po kriptografii)”, Matematicheskie voprosy kriptografii, 15:1 (2024), 127–142 | DOI
[10] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2002), 99–113 | DOI | Zbl
[11] Fomichev V. M., Diskretnaya matematika i kriptologiya, Dialog-MIFI, M., 2003, 400 pp.
[12] Beth N., Ding C., “On almost perfect nonlinear permutations”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1994, 65–76 | DOI | MR | Zbl
[13] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, 2021, 574 pp. | MR | Zbl
[14] Carlet C., “Bounds on the nonlinearity of differentially uniform functions by means of their image set size, and on their distance to affine functions”, IEEE Trans. Inf. Theory, 67:12 (2021), 8325–8334 | DOI | MR | Zbl
[15] Carlet C., Ding C., “Highly nonlinear mappings”, J. Complexity, 20:2 (2004), 205–244 | DOI | MR | Zbl
[16] Carlet C., Ding C., Yuan J., “Linear codes from perfect nonlinear mappings and their secret sharing schemes”, IEEE Trans. Inf. Theory, 51:6 (2005), 2089–2102 | DOI | MR | Zbl
[17] Chen L., Fu F., “On the nonlinearity of multi-output Boolean functions”, Acta Sci. Nat. Univ. Nankai., 34:4 (2001), 28–33
[18] Gorodilova A. A., Tokareva N. N., Agievich S. V. et al., “An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO””, Sibirskie elektronnye matematicheskie izvestiya, 19:1 (2022), A.9–A.37 | MR
[19] Liu J., Chen L., “On nonlinearity of the second type of multi-output Boolean functions”, Chin. J. Eng. Math., 31:1 (2014), 9–22 | DOI | MR | Zbl
[20] Liu J., Mesnager S., Chen L., “On the nonlinearity of $S$-boxes and linear codes”, Cryptogr. Commun., 9:1 (2017), 345–361 | DOI | MR | Zbl
[21] Nyberg K., “On the construction of highly nonlinear permutations”, EUROCRYPT 1992, Lect. Notes Comput. Sci., 658, 1993, 92–98 | DOI | MR
[22] Nyberg K., “Differentially uniform mappings for cryptography”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1994, 55–64 | DOI | MR | Zbl
[23] Rothaus O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[24] Ryabov V.G., “Characteristics of nonlinearity of vectorial functions over finite fields”, Matematicheskie voprosy kriptografii, 14:2 (2023), 123–136 | DOI | MR | Zbl
[25] Ryabov V.G., “Nonlinearity of $\mathrm{APN}$-functions: comparative analysis and estimates”, Prikl. diskr. matem., 61 (2023), 15–27 | MR
[26] Ryabov V., “Nonlinearity of vectorial functions over finite fields with given differential uniformity”, Trudy XI Mezhdunar. konf. «Diskretnye modeli v teorii upravlyayuschikh sistem», MAKS Press, M., 2023, 9–12