@article{DM_2024_36_2_a2,
author = {S. Mitra and S. Bhoumik},
title = {On total irregular labelings with no-hole weights of some planar graphs},
journal = {Diskretnaya Matematika},
pages = {23--32},
year = {2024},
volume = {36},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2024_36_2_a2/}
}
S. Mitra; S. Bhoumik. On total irregular labelings with no-hole weights of some planar graphs. Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 23-32. http://geodesic.mathdoc.fr/item/DM_2024_36_2_a2/
[1] Ahmad A., Ibrahim M., Siddiqui M. K., “On the total irregularity strength of generalized Petersen graph”, Math. Rep. (Bucur.), 18(68):2 (2016), 197–204 | MR | Zbl
[2] Beča M., Jendrol S., Miller M., Ryan J., “On irregular total labeling”, Discrete Math., 307 (2007), 1378–1388 | DOI | MR | Zbl
[3] Bondy J. A., Murty U. S. R., Graph Theory, Springer, New York, 2008, 244 pp. | MR | Zbl
[4] Chartrand G., Jacobson M. S., Lehel J., Oellermann O. R., Ruiz S., Saba F., “Irregular networks”, Congr. Numer., 64 (1988), 355–374 | MR
[5] Gallian J. A. “A dynamic survey of graph labeling”, Electr. J. Combinat., 16:3 (2019) | MR
[6] Ivančo J., Jendrol S., “Total edge irregularity strength of trees”, Disc. Math. Graph Theory, 26:3 (2006), 449–456 | DOI | MR | Zbl
[7] Jendrol S., Miškuf J., Soták R., “Total edge irregularity strength of complete graphs and complete bipartite graphs”, Elec. Notes Discrete Math., 28 (2007), 281–285 | DOI | MR | Zbl
[8] Jendrol S., Miškuf J., Soták R., “Total edge irregularity strength of complete graphs and complete bipartite graphs”, Discrete Math., 310 (2010), 400–407 | DOI | MR | Zbl
[9] Nurdin S., Baskoro E. T., Salman A. N. M., Gaos N. N., “On the total vertex irregularity strength of trees”, Discrete Math., 310 (2010), 3043–3048 | DOI | MR | Zbl
[10] Sudibyo N., Iswardani A., Surya Y., Hidayat R., “Total vertex irregularity strength of disjoint union of ladder rung graph and disjoint union of domino graph”, J. Matematika MANTIK, 6:1 (2019), 47–51 | DOI
[11] Wallis W. D., Magic Graphs, Birkhäuser, Boston, 2001, 146 pp. | MR | Zbl