On total irregular labelings with no-hole weights of some planar graphs
Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 23-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A total edge irregular $k$-labeling of a graph $G=(V,E)$, $\partial: V\cup E \rightarrow \{1, 2, 3,\cdots,k\}$ is a labeling of vertices and edges of $G$ in such a way that the weights of all edges are distinct. A total edge irregularity strength of graph $G$, denoted by $\operatorname{tes}(G)$ is defined as the minimal $k$ for which a graph $G$ has a totally irregular total $k$-labeling. Analogously we can define total vertex irregularity strength of graph $G$, denoted by $\operatorname{tvs}(G)$. In this paper, we provide the no-hole total (both edge and vertex) irregularity strength for some well known planar graphs.
Keywords: total edge irregular $k$-labeling, total vertex irregular $k$-labeling, Triangular Snake Graph, Double Triangular Snake Graph, Quadrilateral Snake Graph.
@article{DM_2024_36_2_a2,
     author = {S. Mitra and S. Bhoumik},
     title = {On total irregular labelings with no-hole weights of some planar graphs},
     journal = {Diskretnaya Matematika},
     pages = {23--32},
     year = {2024},
     volume = {36},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_2_a2/}
}
TY  - JOUR
AU  - S. Mitra
AU  - S. Bhoumik
TI  - On total irregular labelings with no-hole weights of some planar graphs
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 23
EP  - 32
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_2_a2/
LA  - ru
ID  - DM_2024_36_2_a2
ER  - 
%0 Journal Article
%A S. Mitra
%A S. Bhoumik
%T On total irregular labelings with no-hole weights of some planar graphs
%J Diskretnaya Matematika
%D 2024
%P 23-32
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/DM_2024_36_2_a2/
%G ru
%F DM_2024_36_2_a2
S. Mitra; S. Bhoumik. On total irregular labelings with no-hole weights of some planar graphs. Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 23-32. http://geodesic.mathdoc.fr/item/DM_2024_36_2_a2/

[1] Ahmad A., Ibrahim M., Siddiqui M. K., “On the total irregularity strength of generalized Petersen graph”, Math. Rep. (Bucur.), 18(68):2 (2016), 197–204 | MR | Zbl

[2] Beča M., Jendrol S., Miller M., Ryan J., “On irregular total labeling”, Discrete Math., 307 (2007), 1378–1388 | DOI | MR | Zbl

[3] Bondy J. A., Murty U. S. R., Graph Theory, Springer, New York, 2008, 244 pp. | MR | Zbl

[4] Chartrand G., Jacobson M. S., Lehel J., Oellermann O. R., Ruiz S., Saba F., “Irregular networks”, Congr. Numer., 64 (1988), 355–374 | MR

[5] Gallian J. A. “A dynamic survey of graph labeling”, Electr. J. Combinat., 16:3 (2019) | MR

[6] Ivančo J., Jendrol S., “Total edge irregularity strength of trees”, Disc. Math. Graph Theory, 26:3 (2006), 449–456 | DOI | MR | Zbl

[7] Jendrol S., Miškuf J., Soták R., “Total edge irregularity strength of complete graphs and complete bipartite graphs”, Elec. Notes Discrete Math., 28 (2007), 281–285 | DOI | MR | Zbl

[8] Jendrol S., Miškuf J., Soták R., “Total edge irregularity strength of complete graphs and complete bipartite graphs”, Discrete Math., 310 (2010), 400–407 | DOI | MR | Zbl

[9] Nurdin S., Baskoro E. T., Salman A. N. M., Gaos N. N., “On the total vertex irregularity strength of trees”, Discrete Math., 310 (2010), 3043–3048 | DOI | MR | Zbl

[10] Sudibyo N., Iswardani A., Surya Y., Hidayat R., “Total vertex irregularity strength of disjoint union of ladder rung graph and disjoint union of domino graph”, J. Matematika MANTIK, 6:1 (2019), 47–51 | DOI

[11] Wallis W. D., Magic Graphs, Birkhäuser, Boston, 2001, 146 pp. | MR | Zbl