Limiting behavior of percolation cluster in a multilayered random environment with breakdown
Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 11-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a sequence ($n=1,2,\cdots$) of finite Markov chains $\{\omega_{n,t}\}_{t\geq1}$ with discrete time describing the percolation process in a band of width $n$ of a multilayered random medium in which a flow (breakdown) already exists, and random variable $\omega_{n,t}$ equals to the width of the percolation cluster at time $t$. For each value of $n$ and given random percolation mechanism the Markov chain $\{\omega_{n,t}\}_{t\geq 1}$ has a limit stationary distribution, corresponding to the random variable $\omega_n$. In the case when the width $n$ of the layers of the medium under consideration tends to infinity, the limit distribution of the random variables $\Omega_{n}\sqrt{b/n}$ ($b$ is some constant) is found, which is the Rayleigh distribution.
Keywords: percolation, percolation cluster, stationary distributions, limit theorems, Rayleigh distribution, method of moments.
Mots-clés : Markov chains
@article{DM_2024_36_2_a1,
     author = {V. I. Vinokurov},
     title = {Limiting behavior of percolation cluster in a multilayered random environment with breakdown},
     journal = {Diskretnaya Matematika},
     pages = {11--22},
     year = {2024},
     volume = {36},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_2_a1/}
}
TY  - JOUR
AU  - V. I. Vinokurov
TI  - Limiting behavior of percolation cluster in a multilayered random environment with breakdown
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 11
EP  - 22
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_2_a1/
LA  - ru
ID  - DM_2024_36_2_a1
ER  - 
%0 Journal Article
%A V. I. Vinokurov
%T Limiting behavior of percolation cluster in a multilayered random environment with breakdown
%J Diskretnaya Matematika
%D 2024
%P 11-22
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/DM_2024_36_2_a1/
%G ru
%F DM_2024_36_2_a1
V. I. Vinokurov. Limiting behavior of percolation cluster in a multilayered random environment with breakdown. Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 11-22. http://geodesic.mathdoc.fr/item/DM_2024_36_2_a1/

[1] Broadbent S. R., Hammersley J. M., “Percolation processes I. Crystals and mazes”, Proc. Camb. Philos. Soc., 53 (1957), 629–641 | DOI | MR | Zbl

[2] Kesten H., “The critical probability of bond percolation on the square lattice equals 1/2”, Comm. Math. Phys., 74 (1980), 41–59 | DOI | MR | Zbl

[3] Kesten Kh., Teoriya prosachivaniya dlya matematikov, Mir, M., 1986, 392 pp.

[4] Harris T. E., “A lower bound for the critical probability in a certain percolation process”, Proc. Cambr. Philos. Soc., 56:1 (1960), 13–20 | DOI | MR | Zbl

[5] Russo L., “A note on percolation”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 43 (1978), 39–48 | DOI | MR | Zbl

[6] Seymour P. D., Welsh D. J. A., “Percolation probabilities on the square lattice”, Ann. Discrete Math., 3 (1978), 227–245 | DOI | MR | Zbl

[7] Balberg I., “Recent developments in continuum percolation”, Philos. Mag. B, 56:6 (1987), 991–1003 | DOI

[8] Wong P. Z., “The statistical physics of sedimentary rock”, Phys. Today, 41:12 (1988), 24–32 | DOI

[9] Duminil-Copin H., “Sixty years of percolation”, Proc. Int. Cong. of Math., ICM 2018 (Rio de Janeiro, Brazil, August 1–9), v. 4, 2018, 2847–2874 | MR

[10] Berkowitz B., Ewing R. P., “Percolation theory and network modeling applications in soil physics”, Surv. Geophys., 19:1 (1998), 23–72 | DOI