Estimate of test lenghts in Zhegalkin basis in the case of constant faults of type 1>> at gate outputs
Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For functions $f$ of a special type, an upper bound of the lenght $D(f)$ of the complete fault detection test is obtained when they are implemented by circuits in the Zhegalkin basis in the case of constant faults of type “1” at the outputs of gates. As a result, the estimate $D(f)\le \frac{n^{k-1}}{(k-2)!}+1$ is obtained for the functions $f$ of $n\ge k$ variables having Zhegalkin polynomial of degree not greater than $k$.
Keywords: circuit of gates, constant faults, fault detection test, Zhegalkin basis.
@article{DM_2024_36_2_a0,
     author = {Yu. V. Borodina},
     title = {Estimate of test lenghts in {Zhegalkin} basis in the case of constant faults of type <<1>> at gate outputs},
     journal = {Diskretnaya Matematika},
     pages = {3--10},
     year = {2024},
     volume = {36},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_2_a0/}
}
TY  - JOUR
AU  - Yu. V. Borodina
TI  - Estimate of test lenghts in Zhegalkin basis in the case of constant faults of type <<1>> at gate outputs
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 3
EP  - 10
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_2_a0/
LA  - ru
ID  - DM_2024_36_2_a0
ER  - 
%0 Journal Article
%A Yu. V. Borodina
%T Estimate of test lenghts in Zhegalkin basis in the case of constant faults of type <<1>> at gate outputs
%J Diskretnaya Matematika
%D 2024
%P 3-10
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/DM_2024_36_2_a0/
%G ru
%F DM_2024_36_2_a0
Yu. V. Borodina. Estimate of test lenghts in Zhegalkin basis in the case of constant faults of type <<1>> at gate outputs. Diskretnaya Matematika, Tome 36 (2024) no. 2, pp. 3-10. http://geodesic.mathdoc.fr/item/DM_2024_36_2_a0/

[1] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, M., 1984, 138 pp.

[2] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2002, 384 pp.

[3] Yablonskii S. V., “Nekotorye voprosy nadezhnosti i kontrolya upravlyayuschikh sistem”, Matem. voprosy kibernetiki, 1 (1988), 5–25 | MR | Zbl

[4] Redkin N. P., Nadezhnost i diagnostika skhem, Izd-vo MGU, M., 1992, 192 pp.

[5] Borodina Yu. V., Borodin P. A., “Sintez legkotestiruemykh skhem v bazise Zhegalkina pri konstantnykh neispravnostyakh tipa «0» na vykhodakh elementov”, Diskretnaya matematika, 22:3 (2010), 127–133 | DOI | MR | Zbl

[6] Borodina Yu. V., “Legkotestiruemye skhemy v bazise Zhegalkina pri konstantnykh neispravnostyakh tipa «1» na vykhodakh elementov”, Diskretnaya matematika, 31:2 (2019), 14–19 | DOI | MR

[7] Borodina Yu. V., “Nekotorye klassy legkotestiruemykh skhem v bazise Zhegalkina”, Diskretnaya matematika, 33:4 (2021), 3–10 | DOI

[8] Borodina Yu. V., “O skhemakh, dopuskayuschikh edinichnye testy dliny 1 pri konstantnykh neispravnostyakh na vykhodakh elementov na vykhodakh elementov”, Vestnik Mosk. un-ta. Seriya 1: Matem. Mekhanika, 2008, no. 5, 49–52 | MR | Zbl

[9] Romanov D. S., “Metod sinteza neizbytochnykh skhem v bazise Zhegalkina, dopuskayuschikh edinichnye diagnosticheskie testy dliny odin”, Izv. vyssh. uchebn. zaved. Povolzh. region. Fiz.-matem. nauki., 4 (36) (2015), 38–54

[10] Romanov D. S., Romanova E. Yu., “Metod sinteza neizbytochnykh skhem, dopuskayuschikh edinichnye proveryayuschie testy konstantnoi dliny”, Diskretnaya matematika, 29:4 (2017), 87–105 | DOI

[11] Popkov K. A., “Metod postroeniya legko diagnostiruemykh skhem iz funktsionalnykh elementov otnositelno edinichnykh neispravnostei”, Prikladnaya diskretnaya matematika, 46 (2019), 38–57 | Zbl

[12] Redkin N. P., “O polnykh proveryayuschikh testakh dlya skhem iz funktsionalnykh elementov”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1989, no. 1, 72–74 | MR