Mots-clés : immigration
@article{DM_2024_36_1_a6,
author = {S. O. Sharipov},
title = {Functional limit theorem for critical branching process with weakly dependent immigration},
journal = {Diskretnaya Matematika},
pages = {136--148},
year = {2024},
volume = {36},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2024_36_1_a6/}
}
S. O. Sharipov. Functional limit theorem for critical branching process with weakly dependent immigration. Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 136-148. http://geodesic.mathdoc.fr/item/DM_2024_36_1_a6/
[1] Rahimov I., “Homogeneous branching processes with non-homogeneous immigration”, Stochastics and Quality Control, 36 (2021), 165–183 | DOI | MR | Zbl
[2] Rakhimov I., “O kriticheskikh protsessakh Galtona-Vatsona s rastuschei immigratsiei”, Izv. AN UzSSR. Ser. fiz.-mat.n., 1978, no. 4, 22–27 | Zbl
[3] Rakhimov I., “O vetvyaschikhsya sluchainykh protsessakh s rastuschei immigratsiei”, DAN UzSSR. Ser. fiz.-mat.n., 1981, no. 1, 3–5 | Zbl
[4] Rakhimov I., “O predelnykh teoremakh dlya posledovatelnosti vetvyaschikhsya protsessov s neodnorodnoi immigratsiei”, Teoriya veroyatn. i ee primen., 29:4 (1984), 816–817
[5] Rakhimov I., Sirazhdinov S. Kh., “Approksimatsiya raspredeleniya summy v odnoi skheme summirovaniya nezavisimykh sluchainykh velichin”, DAN SSSR, 301:1 (1988), 3–5
[6] Rahimov I., Random Sums and Branching Stochastic Processes, Lect. Notes Statist., 96, Springer, New York, 1995, 207 pp. | DOI | MR | Zbl
[7] Rahimov I., “Functional limit theorems for critical processes with immigration”, Adv. Appl. Probab., 39:4 (2007), 1054–1069 | DOI | MR | Zbl
[8] Gou H., Zhang M., “A fluctuation limit theorem for a critical branching process with dependent immigration”, Statist. Prob. Lett., 94:8 (2014), 29–38 | MR
[9] Khusanbaev Ya. M., Sharipov S. O., “Funktsionalnaya predelnaya teorema dlya kriticheskikh vetvyaschikhsya protsessov s zavisimoi immigratsiei”, Uzb. mat. zhurn., 2017, no. 3, 142–148 | MR
[10] Sharipov S. O., “Central limit theorem for branching process with immigration”, AIP Conf. Proc., 2365:1 (2021), 060020 | DOI | MR
[11] Sharipov S., “On limit theorems for branching processes with dependent immigration”, Global and Stoch. Anal., 8:3 (2021), 151–160 | MR
[12] Li D. D., Zhang M., “Limit theorem and parameter estimation for a critical branching process with mixing immigration”, Chinese J. Appl. Probab. Statist., 36:4 (2020), 331–341 | MR | Zbl
[13] Liptser R. Sh., Shiryaev A. N., “Funktsionalnaya predelnaya teorema dlya semimartingalov”, Teoriya veroyatn. i ee primen., 25:4 (1980), 683–703 | MR | Zbl
[14] Liptser R. Sh., Shiryaev A. N., “O slaboi skhodimosti semimartingalov k stokhasticheski nepreryvnym protsessam s nezavisimymi i uslovno nezavisimymi prirascheniyami”, Matem. sb., 116(158):3(11) (1981), 331–358 | MR | Zbl
[15] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer, Berlin, 2003, 684 pp. | MR | Zbl
[16] Kolmogorov A. N., Rozanov Yu. A., “Ob usloviyakh silnogo peremeshivaniya gaussovskogo statsionarnogo protsessa”, Teoriya veroyatn. i ee primen., 5:2 (1960), 222–227 | Zbl
[17] Bradley R., Introduction to Strong Mixing Conditions, v. 1, Kendrick Press, New York, 2007, 539 pp. | MR
[18] Utev S. A., “Ob odnom sposobe issledovaniya summ slabozavisimykh sluchainykh velichin”, Sib. matem. zhurn., 32:4 (1991), 165–183 | MR
[19] Merlevéde F., Peligrad M., Utev S., Functional Gaussian Approximation for Dependent Structures, Oxford University Press, Oxford, 2019, 496 pp. | MR | Zbl
[20] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 142 pp.
[21] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 400 pp.