Functional limit theorem for critical branching process with weakly dependent immigration
Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 136-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a critical branching process with increasing immigration. In the case when immigration process satisfies $\rho$-mixing condition, a functional limit theorem is obtained.
Keywords: branching process, mixing condition, a functional limit theorem.
Mots-clés : immigration
@article{DM_2024_36_1_a6,
     author = {S. O. Sharipov},
     title = {Functional limit theorem for critical branching process with weakly dependent immigration},
     journal = {Diskretnaya Matematika},
     pages = {136--148},
     year = {2024},
     volume = {36},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_1_a6/}
}
TY  - JOUR
AU  - S. O. Sharipov
TI  - Functional limit theorem for critical branching process with weakly dependent immigration
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 136
EP  - 148
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_1_a6/
LA  - ru
ID  - DM_2024_36_1_a6
ER  - 
%0 Journal Article
%A S. O. Sharipov
%T Functional limit theorem for critical branching process with weakly dependent immigration
%J Diskretnaya Matematika
%D 2024
%P 136-148
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/DM_2024_36_1_a6/
%G ru
%F DM_2024_36_1_a6
S. O. Sharipov. Functional limit theorem for critical branching process with weakly dependent immigration. Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 136-148. http://geodesic.mathdoc.fr/item/DM_2024_36_1_a6/

[1] Rahimov I., “Homogeneous branching processes with non-homogeneous immigration”, Stochastics and Quality Control, 36 (2021), 165–183 | DOI | MR | Zbl

[2] Rakhimov I., “O kriticheskikh protsessakh Galtona-Vatsona s rastuschei immigratsiei”, Izv. AN UzSSR. Ser. fiz.-mat.n., 1978, no. 4, 22–27 | Zbl

[3] Rakhimov I., “O vetvyaschikhsya sluchainykh protsessakh s rastuschei immigratsiei”, DAN UzSSR. Ser. fiz.-mat.n., 1981, no. 1, 3–5 | Zbl

[4] Rakhimov I., “O predelnykh teoremakh dlya posledovatelnosti vetvyaschikhsya protsessov s neodnorodnoi immigratsiei”, Teoriya veroyatn. i ee primen., 29:4 (1984), 816–817

[5] Rakhimov I., Sirazhdinov S. Kh., “Approksimatsiya raspredeleniya summy v odnoi skheme summirovaniya nezavisimykh sluchainykh velichin”, DAN SSSR, 301:1 (1988), 3–5

[6] Rahimov I., Random Sums and Branching Stochastic Processes, Lect. Notes Statist., 96, Springer, New York, 1995, 207 pp. | DOI | MR | Zbl

[7] Rahimov I., “Functional limit theorems for critical processes with immigration”, Adv. Appl. Probab., 39:4 (2007), 1054–1069 | DOI | MR | Zbl

[8] Gou H., Zhang M., “A fluctuation limit theorem for a critical branching process with dependent immigration”, Statist. Prob. Lett., 94:8 (2014), 29–38 | MR

[9] Khusanbaev Ya. M., Sharipov S. O., “Funktsionalnaya predelnaya teorema dlya kriticheskikh vetvyaschikhsya protsessov s zavisimoi immigratsiei”, Uzb. mat. zhurn., 2017, no. 3, 142–148 | MR

[10] Sharipov S. O., “Central limit theorem for branching process with immigration”, AIP Conf. Proc., 2365:1 (2021), 060020 | DOI | MR

[11] Sharipov S., “On limit theorems for branching processes with dependent immigration”, Global and Stoch. Anal., 8:3 (2021), 151–160 | MR

[12] Li D. D., Zhang M., “Limit theorem and parameter estimation for a critical branching process with mixing immigration”, Chinese J. Appl. Probab. Statist., 36:4 (2020), 331–341 | MR | Zbl

[13] Liptser R. Sh., Shiryaev A. N., “Funktsionalnaya predelnaya teorema dlya semimartingalov”, Teoriya veroyatn. i ee primen., 25:4 (1980), 683–703 | MR | Zbl

[14] Liptser R. Sh., Shiryaev A. N., “O slaboi skhodimosti semimartingalov k stokhasticheski nepreryvnym protsessam s nezavisimymi i uslovno nezavisimymi prirascheniyami”, Matem. sb., 116(158):3(11) (1981), 331–358 | MR | Zbl

[15] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer, Berlin, 2003, 684 pp. | MR | Zbl

[16] Kolmogorov A. N., Rozanov Yu. A., “Ob usloviyakh silnogo peremeshivaniya gaussovskogo statsionarnogo protsessa”, Teoriya veroyatn. i ee primen., 5:2 (1960), 222–227 | Zbl

[17] Bradley R., Introduction to Strong Mixing Conditions, v. 1, Kendrick Press, New York, 2007, 539 pp. | MR

[18] Utev S. A., “Ob odnom sposobe issledovaniya summ slabozavisimykh sluchainykh velichin”, Sib. matem. zhurn., 32:4 (1991), 165–183 | MR

[19] Merlevéde F., Peligrad M., Utev S., Functional Gaussian Approximation for Dependent Structures, Oxford University Press, Oxford, 2019, 496 pp. | MR | Zbl

[20] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 142 pp.

[21] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 400 pp.