On statistical testing of composite hypotheses on $s$-dimensional uniform probability distribution of binary sequences
Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 116-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem of construction and analysis of statistical decision rules for testing of composite hypotheses on $s$-dimensional uniform probability distribution of binary random sequences is considered. An adequate for applications model of composite null hypothesis $H_0^{\varepsilon}$ with some fixed maximal deviation $\varepsilon$ from the uniform distribution is proposed. An approach to construction of a test for composite hypotheses $H_0^{\varepsilon}$, $\overline{H_0^{\varepsilon}}$ based on asymptotic expansion (w.r.t. $\varepsilon\rightarrow 0$) of the logarithmic probability ratio statistic is developed. The consistent test with a fixed significance level is constructed and its power is analyzed theoretically and by computer experiments.
Keywords: statistical test, binary sequence, $s$-dimensional uniformity, composite hypotheses, asymptotic expansion, consistency.
@article{DM_2024_36_1_a5,
     author = {Yu. S. Kharin and A. M. Zubkov},
     title = {On statistical testing of composite hypotheses on $s$-dimensional uniform probability distribution of binary sequences},
     journal = {Diskretnaya Matematika},
     pages = {116--135},
     year = {2024},
     volume = {36},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_1_a5/}
}
TY  - JOUR
AU  - Yu. S. Kharin
AU  - A. M. Zubkov
TI  - On statistical testing of composite hypotheses on $s$-dimensional uniform probability distribution of binary sequences
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 116
EP  - 135
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_1_a5/
LA  - ru
ID  - DM_2024_36_1_a5
ER  - 
%0 Journal Article
%A Yu. S. Kharin
%A A. M. Zubkov
%T On statistical testing of composite hypotheses on $s$-dimensional uniform probability distribution of binary sequences
%J Diskretnaya Matematika
%D 2024
%P 116-135
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/DM_2024_36_1_a5/
%G ru
%F DM_2024_36_1_a5
Yu. S. Kharin; A. M. Zubkov. On statistical testing of composite hypotheses on $s$-dimensional uniform probability distribution of binary sequences. Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 116-135. http://geodesic.mathdoc.fr/item/DM_2024_36_1_a5/

[1] Zubkov A. M., “Entropiya kak kharakteristika kachestva sluchainykh posledovatelnostei”, Matematicheskie voprosy kriptografii, 12:3 (2021), 31–48 | DOI | MR | Zbl

[2] Alferov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptogafii, Gelios ARV, M., 2005, 480 pp.

[3] NIST SP 800-22: Download Documentation and Software https://csrc.nist.gov/projects/ random-bit-generation/documentation-and-software

[4] Brown R., Dieharder: A Random Number Test Suite https://physics.duke.edu/ rgb/General/rand_rate.php

[5] Jones G., Gjrand random numbers official site http://gjrand.sourcef orge.net

[6] Kharin Yu. S., Agievich S. V., Vasilev D. V., Matveev G. V., Kriptologiya, BGU, Minsk, 2013, 512 pp.

[7] Zubkov A. M., Serov A. A., “Testing the NIST Statistical Test Suite on artificial pseudorandom sequences”, Matematicheskie voprosy kriptografii, 10:2 (2019), 89–96 | DOI | MR | Zbl

[8] Kharin Yu. S., Petlitskii A. I., “Tsep Markova $s$-go poryadka s $r$ chastichnymi svyazyami i statisticheskie vyvody o ee parametrakh”, Diskretnaya matematika, 12:2 (2007), 109–130 | DOI

[9] Savelov M. P., “Predelnoe sovmestnoe raspredelenie statistik kriteriev paketa NIST «Monobit Test», «Frequence Test within a Block» i obobscheniya kriteriya «Approximate Entropy Test»”, Diskretnaya matematika, 35:2 (2023), 93–108 | DOI

[10] Kowalska K. A., On the revision of NIST 800-22 Test Suite https://eprint.iacr.org/2022/540.pdf

[11] Decision to Revise NIST SP 800-22 Rev. 1a https://csrc.nist.gov/news/2022/ decision-to-revise-nist-sp-800-22-rev-1a

[12] Palukha V. Yu., Kharin Yu. S., Maltsev M. V. [i dr.], “Programmnyi kompleks dlya entropiinogo analiza diskretnykh posledovatelnostei”, Informatsionnye sistemy i tekhnologii = Information Systems and Technologies: materialy mezhdunar. nauch. kongressa po informatike, 1 (2022), 102–107

[13] Voloshko V. A., Trubei A. I., “O moschnosti testov mnogomernoi diskretnoi ravnomernosti, ispolzuemykh dlya statisticheskogo analiza generatorov sluchainykh posledovatelnostei”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2022, no. 1, 26–37 | MR

[14] Kharin Yu. S., Voloshko V. A., Medved E. A., “Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series”, Mathematical Methods of Statistics, 27:2 (2018), 103–118 | DOI | MR | Zbl

[15] Kharin Yu. S., Zhuk E. E., “Robustness in statistical pattern recognition under contamination of training samples”, Procedings – International Conference on Pattern Recognition, 2 (1994), 504–506 | DOI

[16] Fokianos K., Fried R., Kharin Yu., Voloshko V., “Statistical analysis of multivariate discrete-valued time series”, Journal of Multivariate Analysis, 188 (2022), 104805 | DOI | MR | Zbl

[17] Borovkov A. A., Matematicheskaya statistika, Vysshaya shkola, M., 1997, 771 pp.

[18] Ivchenko G. I., Medvedev Yu. I., Matematicheskaya statistika, Vysshaya shkola, M., 1992, 304 pp. | MR

[19] Palukha V. Yu., Kharin Yu. S., “Statisticheskoe testirovanie kriptograficheskikh generatorov na osnove slozhnoi nulevoi gipotezy”, Teoreticheskaya i prikladnaya kriptografiya: materialy II Mezhdunarodnoi nauchnoi konferentsii, BGU, Minsk, 2023, 185–193

[20] Kharin A. Y., Kishylau D. V., “Robust sequential test for hypotheses about discrete distributions in the presence of outliers”, Journal of mathematical sciences, 205:1 (2015), 68–73 | DOI | MR | Zbl

[21] Kharin A. Y., “An approach to asymptotic robustness analysis of sequential test for composite parametric hypotheses”, Journal of mathematical sciences, 227:2 (2017), 196–203 | DOI | MR | Zbl

[22] Kharin A. Y., “Sequential probability ratio test for many simple hypotheses on parameters of time series with trend”, Journal of Belarusian State University. Mathematics. Informatics, 2019, no. 1, 35–45 | MR | Zbl