On satellites of $\sigma_\Omega$-foliated formations of groups
Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 103-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Only finite groups are considered. A class of groups is called a formation if it is closed under taking homomorphic images and subdirect products. For a non-empty class $\Omega$ of simple groups V.A. Vedernikov defined $\Omega$-foliated formations of finite groups using two types of functions (functions-satellites and functions-directions). Let $\sigma_\Omega$ be an arbitrary partition of the class $\Omega$. The article studies $\sigma_\Omega$-foliated formations constructed by the authors as a natural generalization of the concept of an $\Omega$-foliated formation using A.N. Skiba's $\sigma$-methods. In the paper we proved the existence of different types of satellites of $\sigma_\Omega$-foliated formations and described their structure.
Keywords: finite group, class of groups, $\sigma_\Omega$-foliated formation, satellite of $\sigma_\Omega$-foliated formation, direction of $\sigma_\Omega$-foliated formation.
Mots-clés : formation
@article{DM_2024_36_1_a4,
     author = {M. M. Sorokina and A. S. Nesterov},
     title = {On satellites of $\sigma_\Omega$-foliated formations of groups},
     journal = {Diskretnaya Matematika},
     pages = {103--115},
     year = {2024},
     volume = {36},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_1_a4/}
}
TY  - JOUR
AU  - M. M. Sorokina
AU  - A. S. Nesterov
TI  - On satellites of $\sigma_\Omega$-foliated formations of groups
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 103
EP  - 115
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_1_a4/
LA  - ru
ID  - DM_2024_36_1_a4
ER  - 
%0 Journal Article
%A M. M. Sorokina
%A A. S. Nesterov
%T On satellites of $\sigma_\Omega$-foliated formations of groups
%J Diskretnaya Matematika
%D 2024
%P 103-115
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/DM_2024_36_1_a4/
%G ru
%F DM_2024_36_1_a4
M. M. Sorokina; A. S. Nesterov. On satellites of $\sigma_\Omega$-foliated formations of groups. Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 103-115. http://geodesic.mathdoc.fr/item/DM_2024_36_1_a4/

[1] Vedernikov V. A., “Maksimalnye sputniki $\Omega$-rassloennykh formatsii i klassov Fittinga”, Trudy IMM UrO RAN, 7:2 (2001), 55–71

[2] Vedernikov V. A., Sorokina M. M., “$\Omega$-rassloennye formatsii i klassy Fittinga konechnykh grupp”, Diskretnaya matematika, 13:3 (2001), 125–144 | DOI | Zbl

[3] Vedernikov V. A., “O novykh tipakh $\omega$-veernykh formatsii konechnykh grupp”, Ukr. matem. kongress – 2001. Sektsiya 1: Pratsi, Kiiv, 2002, 36–45 | Zbl

[4] Vedernikov V. A., Sorokina M. M., “$\omega$-veernye formatsii i klassy Fittinga konechnykh grupp”, Matem. zametki, 71:1 (2002), 43–60 | DOI | MR | Zbl

[5] Vorobev N. N., Algebra klassov konechnykh grupp, Izd-vo Vitebskogo gos. un-ta im. P. M. Masherova, Vitebsk, 2012, 322 pp.

[6] Gorepekina A. A., Sorokina M. M., “$\bar\omega$-sputniki $\bar\omega$-veernykh formatsii konechnykh grupp”, Trudy IMM UrO RAN, 28:2 (2022), 106–113 | MR

[7] Nesterov A. S., Sorokina M. M., “Postroenie $\bar\Omega$-rassloennykh formatsii konechnykh grupp”, Uchenye zapiski Bryanskogo gos. un-ta, 2 (30) (2023), 7–12

[8] Skiba A.N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997, 240 pp. | MR

[9] Skiba A. N., O $\sigma$-svoistvakh konechnykh grupp, Preprint, Izd-vo Gomelskogo gos. un-ta im. F. Skoriny, Gomel, 2013

[10] Skiba A. N., Shemetkov L. A., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | MR | Zbl

[11] Skiba A. N., Shemetkov L. A., “O minimalnom kompozitsionnom ekrane kompozitsionnoi formatsii”, Voprosy algebry, 7, Izd-vo Gomelskogo gos. un-ta im. F. Skoriny, Gomel, 1999, 39–43

[12] Skiba A. N., Shemetkov L. A., “Chastichno kompozitsionnye formatsii konechnykh grupp”, Doklady Nats. Akademii nauk Belarusi, 43:4 (1999), 5–8 | MR | Zbl

[13] Sorokina M. M., Gorepekina A. A., “$\bar\omega$-veernye formatsii konechnykh grupp”, Chebyshevckii sbornik, 22:3 (2021), 232–244 | DOI | MR | Zbl

[14] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[15] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp. | MR

[16] Carter R., Hawkes T., “The $\frak F$-normalizers of a finite soluble group”, J. Algebra, 5:2 (1967), 175–202 | DOI | MR | Zbl

[17] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin – New York, 1992, 891 pp. | MR

[18] Gaschütz W., “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | MR | Zbl

[19] Safonov V. G., Safonova I. N., Skiba A. N., “On one generalization of $\sigma$-local and Baer-local formations”, Problems of Physics, Mathematics and Technics, 4 (41) (2019), 300–305 | MR

[20] Schmid P., “Formationen und Automorphismengruppen”, J. London Math. Soc., 7:1 (1973), 83–94 | DOI | MR | Zbl

[21] Skiba A. N., “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[22] Skiba A. N., “On one generalization of the local formations”, Problems of Physics, Mathematics and Technics, 1 (34) (2018), 79–82 | MR | Zbl