Classification of $(v,5)$-configurations for $v \leq 11$
Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 46-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The combinatorial objects — $(v,k)$-configurations are studied for $k=5$. A theorem on necessary and sufficient conditions of combinatorial equivalence of $(v,5)$-configurations constructed by digraphs with two input and two output arcs at each vertex is proved. Algorithms for constructing $(v,5)$-configurations and identifying combinatorially equivalent ones among them are developed. An exhaustive classification of $(v,5)$-configurations for $v\leq11$ is obtained. Discribing of $(v,5)$-configurations for $v\leqslant 10$ is given and the number of combinatorially non-equivalent $(11,5)$-configurations is pointed.
Mots-clés : $(v,k)$-configurations, $(v,k)$-matrices
Keywords: digraphs, finite groups.
@article{DM_2024_36_1_a2,
     author = {M. M. Komiagin},
     title = {Classification of $(v,5)$-configurations for $v \leq 11$},
     journal = {Diskretnaya Matematika},
     pages = {46--66},
     year = {2024},
     volume = {36},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_1_a2/}
}
TY  - JOUR
AU  - M. M. Komiagin
TI  - Classification of $(v,5)$-configurations for $v \leq 11$
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 46
EP  - 66
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_1_a2/
LA  - ru
ID  - DM_2024_36_1_a2
ER  - 
%0 Journal Article
%A M. M. Komiagin
%T Classification of $(v,5)$-configurations for $v \leq 11$
%J Diskretnaya Matematika
%D 2024
%P 46-66
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/DM_2024_36_1_a2/
%G ru
%F DM_2024_36_1_a2
M. M. Komiagin. Classification of $(v,5)$-configurations for $v \leq 11$. Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 46-66. http://geodesic.mathdoc.fr/item/DM_2024_36_1_a2/

[1] Kholl M., Kombinatorika, Mir, M., 1970, 424 pp. | MR

[2] Malyshev F. M., Tarakanov V. E., “O $(v,k)$-konfiguratsiyakh”, Matem. sb., 192:9 (2001), 85–108 | DOI | MR | Zbl

[3] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp.

[4] Malyshev F. M., “$k$-Konfiguratsii”, Vetvyaschiesya protsessy i smezhnye voprosy, Trudy MIAN, 316, 2022, 248–269 | DOI | Zbl

[5] Trishin A. E., “Primery ($v,k)$-matrits”, Vestnik IKSI (seriya K), spets. vypusk, posvyaschennyi 100-letiyu akademika A. N. Kolmogorova, 2003, 179–185

[6] Malyshev F. M., Frolov A. A., “Klassifikatsiya $(v,3)$-konfiguratsii”, Matem. zametki, 91:5 (2012), 741–749 | DOI | Zbl

[7] Trishin A. E., “Klassifikatsiya tsirkulyantnykh $(v,5)$-matrits”, Obozr. prikl. i promyshl. matematiki, 11:2 (2004), 258–259 | MR

[8] Frolov A. A., “Klassifikatsiya nerazlozhimykh abelevykh $(v,5)$-grupp”, Diskretnaya matematika, 20:1 (2008), 94–108 | DOI | Zbl

[9] Malyshev F. M., “Tri semeistva $5$-konfiguratsii”, Matem. vopr. kriptogr., 4:3 (2013), 83–97 | DOI | Zbl

[10] Komyagin M. M., Malyshev F. M., “Sposoby postroeniya i razlicheniya $5$-konfiguratsii”, Mater. chetyrnadtsatogo mezhdunar. seminara «Diskretnaya matematika i ee prilozheniya» im. akademika O. B. Lupanova, 2022, 159–162

[11] Komyagin M. M., Malyshev F. M., “Izomorfizmy izvestnykh 5-konfiguratsii”, Algebra, teoriya chisel, diskretnaya geometriya, i mnogomasshtabnoe modelirovanie: sovremennye problemy, prilozheniya i problemy istorii (Mater. XXI Mezhdunar. konf., posvyaschennoi 85-letiyu so dnya rozhdeniya A. A. Karatsuby), Tula, 2022, 160–164