Keywords: complexity.
@article{DM_2024_36_1_a1,
author = {V. P. Burichenko},
title = {On bilinear complexity of multiplcation of a $3\times 2$ matrix by a $2\times 3$ matrix},
journal = {Diskretnaya Matematika},
pages = {15--45},
year = {2024},
volume = {36},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2024_36_1_a1/}
}
V. P. Burichenko. On bilinear complexity of multiplcation of a $3\times 2$ matrix by a $2\times 3$ matrix. Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 15-45. http://geodesic.mathdoc.fr/item/DM_2024_36_1_a1/
[1] Alekseyev V. B., “On the complexity of some algorithms of matrix multiplication”, J. Algorithms, 6:1 (1985), 71–85 | DOI | MR | Zbl
[2] Alekseev V. B., “Slozhnost umnozheniya matrits. Obzor.”, Kibern.sb., 25, Mir, M., 1988, 189–236
[3] Alekseev V. B., Smirnov A. V., “O tochnoi i priblizhennoi bilineinykh slozhnostyakh umnozheniya matrits razmerov $4\times 2$ i $2\times 2$”, Sovr. probl. matem., 17 (2013), 135–152 | DOI | Zbl
[4] Alekseev V. B., Smirnov A. V., “On the exact and approximate bilinear complexities of multiplication of $4\times 2$ and $2\times 2$ matrices”, Proc. Steklov Inst. Math., 282, suppl.1 (2013), 123–139 | DOI | MR
[5] Alekseev V. B., “O bilineinoi slozhnosti umnozheniya matrits razmerov $5\times 2$ i $2\times 2$”, Uchen. zap. Kazan. gos. un-ta. Ser. fiz.-matem. nauki, 156:3 (2014), 19–29 | MR
[6] Alekseev V. B., “O bilineinoi slozhnosti umnozheniya matrits razmerov $m\times 2$ i $2\times2$”, Chebyshevskii sbornik, 16:4 (2015), 11–27 | Zbl
[7] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972, 160 pp.
[8] Bläser M., “Lower bounds for the multiplicative complexity of matrix multiplication”, Comput. Complexity, 8:3 (1999), 203–226 | DOI | MR | Zbl
[9] Bläser M., “On the complexity of the multiplication of matrices of small formats”, J.Complexity, 19:1 (2003), 43–60 | DOI | MR | Zbl
[10] Blaser M., “Fast matrix multiplication”, Theory of computing library graduate surveys, 5 (2013), 1–60
[11] Brent R.P., Algorithms for matrix multiplication, Tech. Report TR-CS-70-157, Stanford Uni., 1970, 3+52 pp.
[12] Brockett R.W., Dobkin D. “On the optimal evaluation of a set of bilinear forms”, Linear Algebra Appl., 19:3 (1978), 207–235 | DOI | MR | Zbl
[13] Bürgisser P., Clausen M., Shokrollahi M.A., Algebraic complexity theory, Springer-Verlag, Berlin-Heidelberg, 1997, XXIII+618 pp. | MR | Zbl
[14] Fawzi A., Balog M., Huang A. ea., “Discovering faster matrix multiplication algorithms with reinforcement learning”, Nature, 610 (2022), 47–63 | DOI
[15] Hopcroft J. E., Kerr L. R., On minimizing the number of multiplications necessary for matrix multiplication, Tech. rep. No.69-44, Dept.Comput. sci., Cornell univ., 1969 | MR
[16] Hopcroft J. E., Kerr L. R., “On minimizing the number of multiplications necessary for matrix multiplication”, SIAM J. Appl. Math., 20:1 (1971), 30–36 | DOI | MR | Zbl
[17] Hopcroft J., Musinski J., “Duality applied to the complexity of matrix multiplication and other bilinear forms”, SIAM J. Comput., 2:3 (1973), 159–173 | DOI | MR | Zbl
[18] Hungerford T.W., Algebra, 12-th printing, Springer, 2003, XXIV+504 pp. | MR
[19] Kostrikin A. I., Vvedenie v algebru, v trekh tomakh, 3-e izd., Fizmatlit, M., 2004
[20] Laderman J., “A noncommutative algorithm for multiplying $3\times3$ matrices using 23 multiplications”, Bull. Amer. Math. Soc., 82:1 (1976), 126–128 | DOI | MR | Zbl
[21] Landsberg J. M., Tensors: geometry and applications, Amer. Math.Soc., Providence, RI, 2012, 439 pp. | MR | Zbl
[22] Landsberg J. M., Geometry and complexity theory, Cambridge University Press, Cambridge, 2017, 351 pp. | MR | Zbl
[23] Leng S., Algebra, Mir, M., 1968, 575 pp.
[24] Strassen V., “Gaussian elimination is not optimal”, Numer. Math., 13:4 (1969), 354–356 | DOI | MR | Zbl
[25] Winograd S. “On multiplication of $2\times2$ matrices”, Linear Algebra Appl., 4 (1971), 381–388 | DOI | MR | Zbl