Strongly supercritical branching process in a random environment dying at a distant moment
Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\left\{ Z_{i},\text{ }i=0,1,\ldots \right\} $ be a strongly supercritical branching process in a random environment. It is assumed that the reproduction laws of particles in different generations are geometric. Let $T$ be the extinction time of the specified process. It is shown that the coordinates of a random vector $\left( Z_{0},Z_{1},\ldots ,Z_{n}\right)$ with numbers distant from each other and from $0$ and $n$ are asymptotically independent, provided that $n$, $n\rightarrow \infty $, and have the same limiting distribution.
Keywords: strongly supercritical branching process in a random environment, conditional limit theorems.
@article{DM_2024_36_1_a0,
     author = {V. I. Afanasyev},
     title = {Strongly supercritical branching process in a random environment dying at a distant moment},
     journal = {Diskretnaya Matematika},
     pages = {3--14},
     year = {2024},
     volume = {36},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2024_36_1_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Strongly supercritical branching process in a random environment dying at a distant moment
JO  - Diskretnaya Matematika
PY  - 2024
SP  - 3
EP  - 14
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_2024_36_1_a0/
LA  - ru
ID  - DM_2024_36_1_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Strongly supercritical branching process in a random environment dying at a distant moment
%J Diskretnaya Matematika
%D 2024
%P 3-14
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/DM_2024_36_1_a0/
%G ru
%F DM_2024_36_1_a0
V. I. Afanasyev. Strongly supercritical branching process in a random environment dying at a distant moment. Diskretnaya Matematika, Tome 36 (2024) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/DM_2024_36_1_a0/

[1] Athreya K. B., Karlin S., “Branching processes with random environments, II: limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843–1858 | DOI | MR | Zbl

[2] Tanny D., “A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means”, Stoch. Proc. Appl., 28:1 (1998), 123–139 | DOI | MR

[3] Guivarc'h Y., Liu Q., “Propriétés asymptotiques des processus de branchement en environnement aléatoire”, C. R. Acad. Sci., Ser. I, Math., 332:4 (2001), 339–344 | MR | Zbl

[4] Afanasyev V. I., “On the maximum of a subcritical branching process in a random environment”, Stoch. Proc. Appl., 93:1 (2001), 87–107 | DOI | MR | Zbl

[5] Huang C., Liu Q., “Convergence in $L^p$ and its exponential rate for a branching process in a random environment”, Electron. J. Probab., 19 (2014), 1–22 | DOI | MR

[6] Boinghoff C., “Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions”, Stoch. Proc. Appl., 124:11 (2014), 3553–3577 | DOI | MR | Zbl

[7] Bansaye V., Boinghoff C., “Small positive values for supercritical branching processes in random environment”, Ann. Inst. H. Poincaré. Probab. Statist., 50:3 (2014), 770–805 | MR

[8] Afanasev V. I., “Slabo nadkriticheskii vetvyaschiisya protsess v neblagopriyatnoi sluchainoi srede”, Diskretnaya matematika, 34:3 (2022), 3–19 | DOI

[9] Afanasev V. I., “Slabo nadkriticheskii vetvyaschiisya protsess v sluchainoi srede pri uslovii otdalennogo vyrozhdeniya”, Teoriya veroyatn. i ee primen., 68:4 (2023), 665–690 | DOI

[10] Afanasev V. I., “Predelnye teoremy dlya promezhutochno dokriticheskogo i strogo dokriticheskogo vetvyaschikhsya protsessov v sluchainoi srede”, Diskretnaya matematika, 13:1 (2001), 132–157 | DOI | Zbl

[11] Afanasyev V. I., “Limit theorems for a strongly supercritical branching process with immigration in random environment”, Stoch. Qual. Control, 36:2 (2021), 129–143 | DOI | MR | Zbl