A functional identity of generalized transitivity for strongly dependent $n$-ary operations
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 146-156

Voir la notice de l'article provenant de la source Math-Net.Ru

We proof that functional identity of generalized transitivity for strongly dependent operations may be described in analogy with quasigroups by replacing term «group» by term «monoid». We show how to generalize this result to $n$-ary strongly dependent operations.
Keywords: binary and $n$-ary quasigroups, strongly dependent operation, generalized transitivity identity.
@article{DM_2023_35_4_a9,
     author = {A. V. Cheremushkin},
     title = {A functional identity of generalized transitivity for strongly dependent $n$-ary operations},
     journal = {Diskretnaya Matematika},
     pages = {146--156},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a9/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - A functional identity of generalized transitivity for strongly dependent $n$-ary operations
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 146
EP  - 156
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a9/
LA  - ru
ID  - DM_2023_35_4_a9
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T A functional identity of generalized transitivity for strongly dependent $n$-ary operations
%J Diskretnaya Matematika
%D 2023
%P 146-156
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a9/
%G ru
%F DM_2023_35_4_a9
A. V. Cheremushkin. A functional identity of generalized transitivity for strongly dependent $n$-ary operations. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 146-156. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a9/