A functional identity of generalized transitivity for strongly dependent $n$-ary operations
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 146-156
Voir la notice de l'article provenant de la source Math-Net.Ru
We proof that functional identity of generalized transitivity for strongly dependent operations may be described in analogy with quasigroups by replacing term «group» by term «monoid». We show how to generalize this result to $n$-ary strongly dependent operations.
Keywords:
binary and $n$-ary quasigroups, strongly dependent operation, generalized transitivity identity.
@article{DM_2023_35_4_a9,
author = {A. V. Cheremushkin},
title = {A functional identity of generalized transitivity for strongly dependent $n$-ary operations},
journal = {Diskretnaya Matematika},
pages = {146--156},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a9/}
}
TY - JOUR AU - A. V. Cheremushkin TI - A functional identity of generalized transitivity for strongly dependent $n$-ary operations JO - Diskretnaya Matematika PY - 2023 SP - 146 EP - 156 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a9/ LA - ru ID - DM_2023_35_4_a9 ER -
A. V. Cheremushkin. A functional identity of generalized transitivity for strongly dependent $n$-ary operations. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 146-156. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a9/