Description of the closed class of polynomial functions modulo a power of a prime number by a relation
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 115-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

The closed class $\operatorname{Pol}_{p^m}$ of polynomial modulo $p^m$ functions of $p^m$-valued logic are examined where $p$ is a prime number, $1 \leqslant m \leqslant p$. Characterizations of polynomiality modulo $p^m$ are found for functions of $p^m$-valued logic. A relation describing the class $\operatorname{Pol}_{p^m}$ is obtained in explicit form.
Keywords: function of multiple-valued logic, residue ring, polynomial, closed class, relation.
@article{DM_2023_35_4_a6,
     author = {S. N. Selezneva},
     title = {Description of the closed class of polynomial functions modulo a power of a prime number by a relation},
     journal = {Diskretnaya Matematika},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a6/}
}
TY  - JOUR
AU  - S. N. Selezneva
TI  - Description of the closed class of polynomial functions modulo a power of a prime number by a relation
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 115
EP  - 125
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a6/
LA  - ru
ID  - DM_2023_35_4_a6
ER  - 
%0 Journal Article
%A S. N. Selezneva
%T Description of the closed class of polynomial functions modulo a power of a prime number by a relation
%J Diskretnaya Matematika
%D 2023
%P 115-125
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a6/
%G ru
%F DM_2023_35_4_a6
S. N. Selezneva. Description of the closed class of polynomial functions modulo a power of a prime number by a relation. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 115-125. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a6/

[1] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Trudy MIAN, 51 (1958), 5–142 | Zbl

[2] Aizenberg N. N., Semion I. V., “Nekotorye kriterii predstavimosti funktsii $k$-znachnoi logiki polinomami po modulyu $k$”, Mnogoustoichivye elementy i ikh primenenie, 1971, 84–88, Sov. radio, M.

[3] Cherepov A. N., “Opisanie struktury zamknutykh klassov v $P_k$, soderzhaschikh klass polinomov”, Problemy kibernetiki, 40, Nauka, M., 1983, 5–18 | MR

[4] Remizov A. B., “O nadstrukture zamknutogo klassa polinomov po modulyu $k$”, Diskretnaya matematika, 1:1 (1989), 3–15 | MR

[5] Meschaninov D. G., “Metod postroeniya polinomov dlya funktsii $k$-znachnoi logiki”, Diskretnaya matematika, 7:3 (1995), 48–60

[6] Krokhin A. A., Safin K. L., Sukhanov E. V., “O stroenii reshetki zamknutykh klassov polinomov”, Diskretnaya matematika, 9:2 (1997), 24–39 | DOI | Zbl

[7] Selezneva S. N., “O chisle polinomialnykh funktsii $k$-znachnoi logiki po sostavnomu modulyu $k$”, Diskretnaya matematika, 28:2 (2016), 81–91 | DOI | MR

[8] Meschaninov D. G., “Zamknutye klassy polinomov po modulyu $p^2$”, Diskretnaya matematika, 29:3 (2017), 54–69 | DOI

[9] Meschaninov D. G., “Nekotorye semeistva zamknutykh klassov v $P_k$, zadavaemykh additivnymi formulami”, Diskretnaya matematika, 33:2 (2021), 100–116 | DOI

[10] Alekseev V. B., “O zamknutykh klassakh v chastichnoi $k$-znachnoi logike, soderzhaschikh vse polinomy”, Diskretnaya matematika, 33:1 (2021), 6–19 | DOI | MR

[11] Alekseev V. B., “O moschnosti intervala $\operatorname{Int}(\operatorname{Pol}_k)$ v chastichnoi $k$-znachnoi logike”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 3 (2022), 11–17

[12] Marchenkov S. S., Funktsionalnye sistemy s operatsiei superpozitsii, Fizmatlit, M., 2004, 104 pp. | MR

[13] Lau D., Function Algebras on Finite Sets, Springer, 2006, 671 pp. | MR | Zbl

[14] Carlitz L., “Functions and polynomials $(\bmod\ p^n)$”, Acta Arithmetica, IX (1964), 67–78 | DOI | MR | Zbl

[15] Gavrilov G. P., Sapozhenko A. A., Zadachi i uprazhneniya po diskretnoi matematike, Fizmatlit, M., 2004, 416 pp. | MR