Short tests for contact circuits under one-type weakly connected faults of contacts
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 69-78
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for any natural $k$ any Boolean function can be implemented by a two-pole contact circuit that is $k$-irredundant and allows a $k$-diagnostic test of length no more than $1$ relative to one-type connected faults of contacts in groups where each group consists of one closing and one opening contact.
Keywords:
contact circuit, connected faults of contacts, fault detection test, diagnostic test, Boolean function.
@article{DM_2023_35_4_a4,
author = {K. A. Popkov},
title = {Short tests for contact circuits under one-type weakly connected faults of contacts},
journal = {Diskretnaya Matematika},
pages = {69--78},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a4/}
}
K. A. Popkov. Short tests for contact circuits under one-type weakly connected faults of contacts. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 69-78. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a4/