Short tests for contact circuits under one-type weakly connected faults of contacts
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 69-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any natural $k$ any Boolean function can be implemented by a two-pole contact circuit that is $k$-irredundant and allows a $k$-diagnostic test of length no more than $1$ relative to one-type connected faults of contacts in groups where each group consists of one closing and one opening contact.
Keywords: contact circuit, connected faults of contacts, fault detection test, diagnostic test, Boolean function.
@article{DM_2023_35_4_a4,
     author = {K. A. Popkov},
     title = {Short tests for contact circuits under one-type weakly connected faults of contacts},
     journal = {Diskretnaya Matematika},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a4/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Short tests for contact circuits under one-type weakly connected faults of contacts
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 69
EP  - 78
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a4/
LA  - ru
ID  - DM_2023_35_4_a4
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Short tests for contact circuits under one-type weakly connected faults of contacts
%J Diskretnaya Matematika
%D 2023
%P 69-78
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a4/
%G ru
%F DM_2023_35_4_a4
K. A. Popkov. Short tests for contact circuits under one-type weakly connected faults of contacts. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 69-78. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a4/