The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 58-68
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we give lower and upper bounds on the differential uniformity of substitutions over the field $\mathbb{F}_{2^{n}}$ with restrictions to cosets of $H$ in $\mathbb{F}^{\times}_{2^{n}}$, $H\mathbb{F}^{\times}_{2^{n}}$, $|H|=l$, $l\cdot r=2^{n}-1$, being the maps $x\mapsto c_{i}x$, $c_{i}\in\mathbb{F}^{\times}_{2^{n}}$, $i=0,\dots,r-1$.
Keywords:
block cipher nonlinear confusion components, permutation of a finite field, $s$-box, piecewise-linear function, adapted spectral-differential method.
@article{DM_2023_35_4_a3,
author = {A. V. Menyachikhin},
title = {The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$},
journal = {Diskretnaya Matematika},
pages = {58--68},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a3/}
}
TY - JOUR
AU - A. V. Menyachikhin
TI - The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$
JO - Diskretnaya Matematika
PY - 2023
SP - 58
EP - 68
VL - 35
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a3/
LA - ru
ID - DM_2023_35_4_a3
ER -
A. V. Menyachikhin. The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 58-68. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a3/