The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 58-68

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give lower and upper bounds on the differential uniformity of substitutions over the field $\mathbb{F}_{2^{n}}$ with restrictions to cosets of $H$ in $\mathbb{F}^{\times}_{2^{n}}$, $H\mathbb{F}^{\times}_{2^{n}}$, $|H|=l$, $l\cdot r=2^{n}-1$, being the maps $x\mapsto c_{i}x$, $c_{i}\in\mathbb{F}^{\times}_{2^{n}}$, $i=0,\dots,r-1$.
Keywords: block cipher nonlinear confusion components, permutation of a finite field, $s$-box, piecewise-linear function, adapted spectral-differential method.
@article{DM_2023_35_4_a3,
     author = {A. V. Menyachikhin},
     title = {The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$},
     journal = {Diskretnaya Matematika},
     pages = {58--68},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a3/}
}
TY  - JOUR
AU  - A. V. Menyachikhin
TI  - The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 58
EP  - 68
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a3/
LA  - ru
ID  - DM_2023_35_4_a3
ER  - 
%0 Journal Article
%A A. V. Menyachikhin
%T The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$
%J Diskretnaya Matematika
%D 2023
%P 58-68
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a3/
%G ru
%F DM_2023_35_4_a3
A. V. Menyachikhin. The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 58-68. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a3/