Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2023_35_2_a5, author = {M. P. Savelov}, title = {Limit joint distribution of {<<Monobit} test>>, {<<Frequency} {Test} within a {Block>>,} and {<<Approximate} {Entropy} {Test>>} {Statistics}}, journal = {Diskretnaya Matematika}, pages = {93--108}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2023_35_2_a5/} }
M. P. Savelov. Limit joint distribution of <>, < >, and < > Statistics. Diskretnaya Matematika, Tome 35 (2023) no. 2, pp. 93-108. http://geodesic.mathdoc.fr/item/DM_2023_35_2_a5/
[1] Rukhin A., Soto J., Nechvatal J., Smid M., Barker E., Leigh S., Levenson M., Vangel M., Banks D., Heckert A., Dray J., Vo S., A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22, Revision 1a, April 2010
[2] Serov A. A., “Formuly dlya chisel posledovatelnostei, soderzhaschikh zadannyi shablon zadannoe chislo raz”, Diskretnaya matematika, 32:4 (2020), 120–136 | DOI
[3] Zubkov A. M., Serov A. A., “A natural approach to the experimental study of dependence between statistical tests”, Matem. voprosy kriptografii, 12:1 (2021), 131–142 | DOI | MR | Zbl
[4] Zubkov A. M., Serov A. A., “Testing the NIST Statistical Test Suite on artificial pseudorandom sequences”, Matem. voprosy kriptografii, 10:2 (2019), 89–96 | DOI | MR | Zbl
[5] Zaman J. K. M. S. , Ghosh R., “Review on fifteen statistical tests proposed by NIST”, J. Theor. Phys. Cryptography, 1 (2012), 18–31
[6] Sulak F., Doǧanaksoy A., Uǧuz M., Koçak O., “Periodic template tests: A family of statistical randomness tests for a collection of binary sequences”, Discrete Applied Mathematics, 271 (2019), 191–204 | DOI | MR | Zbl
[7] Soto J., Bassham L., “Randomness testing of the Advanced Encryption Standard finalist candidates”, NIST IR 6483, Nat. Inst. Stand. Technol., 2000
[8] Sulak F., Uǧuz M., Koçak O., Doǧanaksoy A., “On the independence of statistical randomness tests included in the NIST test suite”, Turkish J. Electr. Eng. $\$ Comput. Sci., T., 25:5 (2017), 3673–3683 | DOI | MR
[9] Georgescu C., Simion E., “New results concerning the power of NIST randomness tests”, Proc. Romanian acad., ser. A., 18 (2017), 381–388 | MR
[10] Iwasaki A., Umeno K., “Randomness test to solve Discrete Fourier Transform Test problems”, IEICE Trans. Fundam. Electronics, Commun. Comput. Sci., E101.A:8 (2018), 1204–1214 | DOI
[11] Burciu P., Simion E., “A systematic approach of NIST statistical tests dependencies”, J. Electr. Eng., Electronics, Control and Comput. Sci., 5:15 (2019), 1–6
[12] Rukhin A. L., “Testing randomness: a suite of statistical procedures”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 137—162 | DOI | MR | Zbl
[13] Ryabko B. Ya., Pestunov A. I., “«Stopka knig» kak novyi statisticheskii test dlya sluchainykh chisel”, Probl. peredachi inform., 40:1 (2004), 73–78 | MR | Zbl
[14] Maltsev M. V., Kharin Yu. S., “O testirovanii vykhodnykh posledovatelnostei kriptograficheskikh generatorov na osnove tsepei Markova uslovnogo poryadka”, Informatika, 4 (2013), 104–111
[15] Savelov M. P., “Predelnye sovmestnye raspredeleniya statistik chetyrekh kriteriev paketa NIST”, Diskretnaya matematika, 33:2 (2021), 141–154 | DOI
[16] Savelov M. P., “Predelnye sovmestnye raspredeleniya statistik trekh kriteriev paketa NIST”, Diskretnaya matematika, 33:3 (2021), 92–106 | DOI
[17] Savelov M. P., “Predelnaya teorema dlya sglazhennogo varianta spektralnogo kriteriya ravnoveroyatnosti dvoichnoi posledovatelnosti”, Diskretnaya matematika, 33:4 (2021), 132–140 | DOI
[18] Savelov M. P., “Predelnoe sovmestnoe raspredelenie statistik kriteriev «Monobit test», «Frequency Test within a Block» i «Test for the Longest Run of Ones in a Block»”, Diskretnaya matematika, 34:3 (2022), 70–84 | DOI
[19] Savelov M. P., “Predelnoe sovmestnoe raspredelenie statistik kriteriev «Monobit test», «Frequency Test within a Block» i «Binary Matrix Rank Test»”, Diskretnaya matematika, 34:4 (2022), 84–98 | DOI | MR
[20] Savelov M. P., “Predelnoe sovmestnoe raspredelenie statistik kriteriev «Monobit test», «Frequency Test within a Block» i obobscheniya kriteriya «Serial Test»”, Diskretnaya matematika, 35:1 (2023), 88–106 | DOI | MR
[21] Rukhin A. L., “Approximate Entropy for Testing Randomness”, J. Appl. Prob., 37:1 (2000), 88–100 | DOI | MR | Zbl
[22] Serfling R., Approximation Theorems of Mathematical Statistics, John Wiley Sons, New York, 1980, 371 pp. | MR | Zbl
[23] Petrov V. V., “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 53:2 (2008), 379–382 | DOI
[24] Good I. J., Gover T. N., “The generalized serial test and the binary expansion of $\sqrt{2}$”, J. Roy. Statist. Soc. Ser. A, 130:1 (1967), 102–107 | DOI | MR
[25] Mikhailov V. G., “Asimptoticheskaya normalnost razdelimykh statistik ot chastot $m$-tsepochek”, Diskretnaya matematika, 1:4 (1989), 92–103 | MR
[26] Stepanov V. E., “Nekotorye statisticheskie kriterii dlya tsepei Markova”, Teoriya veroyatn. i ee primen., 2:1 (1957), 143–144 | Zbl
[27] Kievets N. G., Korzun A. I., “Sravnenie statistik testov serii i approksimirovannoi entropii”, Doklady BGUIR, 3 (2014), 12–17
[28] Shiryaev A. N., Veroyatnost, v. 1, MNTsMO, M., 2007, 552 pp.
[29] Ghosh M., “Probabilities of moderate deviations under $m$-dependence”, Canad. J. Statist., 2:2 (1974), 157–168 | DOI | MR | Zbl
[30] Karell-Albo J. A., Legón-Pérez C. M., Madarro-Capó E. J., Rojas O., Sosa-Gómez G., “Measuring independence between statistical randomness tests by mutual information”, Entropy, 22:7 (2020), 1—18 | DOI | MR