Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2023_35_1_a7, author = {V. A. Topchii}, title = {Properties of critical branching random walks on the line under non-extinction condition}, journal = {Diskretnaya Matematika}, pages = {107--127}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2023_35_1_a7/} }
V. A. Topchii. Properties of critical branching random walks on the line under non-extinction condition. Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 107-127. http://geodesic.mathdoc.fr/item/DM_2023_35_1_a7/
[1] Hairuo Y., “On the law of terminal value of additive martingales in a remarkable branching stable process”, Stochastic Processes and their Applications, 158 (2023), 361–376 | DOI | MR
[2] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.
[3] Vatutin V. A., Dyakonova E. E., Topchii V. A., “Kriticheskie protsessy Galtona–Vatsona so schetnym mnozhestvom tipov chastits i beskonechnymi vtorymi momentami”, Matem. sb., 212:1 (2021), 3–27 | MR
[4] Vatutin V. A., “Predelnye teoremy dlya kriticheskikh markovskikh vetvyaschikhsya protsessov s neskolkimi tipami chastits i beskonechnymi vtorymi momentami”, Matem. sb., 103(145):2(6) (1977), 253–264 | MR
[5] Zubkov A. M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatn. primen., 20:3 (1975), 614–623 | MR
[6] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79:1 (1977), 233–241 | DOI | MR