Properties of critical branching random walks on the line under non-extinction condition
Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 107-127
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a critical branching random walk on a real line with discrete time controlled by a point process. Sizes of sequential generations form Galton–Watson critical process with one type of particles. The particle coordinates are interpreted as the weights of the vertices on the genealogical tree of the random walk. A reduced tree is obtained after removing branches of the genealogical tree that do not reach the $n$-th level. The asymptotic behavior of the first two moments of the number of vertices and of the sum of vertex weights over all levels of reduced tree under condition of nonextinction is described. Several limit theorems for the weights of particles in a branching random walk up to $n$-th generation under condition of nonextinction are proved.
Keywords: branching random walk on a real line, Galton–Watson branching process, point process on a line, critical branching process, limit theorems, reduced genealogical trees.
@article{DM_2023_35_1_a7,
     author = {V. A. Topchii},
     title = {Properties of critical branching random walks on the line under non-extinction condition},
     journal = {Diskretnaya Matematika},
     pages = {107--127},
     year = {2023},
     volume = {35},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_1_a7/}
}
TY  - JOUR
AU  - V. A. Topchii
TI  - Properties of critical branching random walks on the line under non-extinction condition
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 107
EP  - 127
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_1_a7/
LA  - ru
ID  - DM_2023_35_1_a7
ER  - 
%0 Journal Article
%A V. A. Topchii
%T Properties of critical branching random walks on the line under non-extinction condition
%J Diskretnaya Matematika
%D 2023
%P 107-127
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/DM_2023_35_1_a7/
%G ru
%F DM_2023_35_1_a7
V. A. Topchii. Properties of critical branching random walks on the line under non-extinction condition. Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 107-127. http://geodesic.mathdoc.fr/item/DM_2023_35_1_a7/

[1] Hairuo Y., “On the law of terminal value of additive martingales in a remarkable branching stable process”, Stochastic Processes and their Applications, 158 (2023), 361–376 | DOI | MR

[2] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.

[3] Vatutin V. A., Dyakonova E. E., Topchii V. A., “Kriticheskie protsessy Galtona–Vatsona so schetnym mnozhestvom tipov chastits i beskonechnymi vtorymi momentami”, Matem. sb., 212:1 (2021), 3–27 | MR

[4] Vatutin V. A., “Predelnye teoremy dlya kriticheskikh markovskikh vetvyaschikhsya protsessov s neskolkimi tipami chastits i beskonechnymi vtorymi momentami”, Matem. sb., 103(145):2(6) (1977), 253–264 | MR

[5] Zubkov A. M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatn. primen., 20:3 (1975), 614–623 | MR

[6] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79:1 (1977), 233–241 | DOI | MR