@article{DM_2023_35_1_a7,
author = {V. A. Topchii},
title = {Properties of critical branching random walks on the line under non-extinction condition},
journal = {Diskretnaya Matematika},
pages = {107--127},
year = {2023},
volume = {35},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_1_a7/}
}
V. A. Topchii. Properties of critical branching random walks on the line under non-extinction condition. Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 107-127. http://geodesic.mathdoc.fr/item/DM_2023_35_1_a7/
[1] Hairuo Y., “On the law of terminal value of additive martingales in a remarkable branching stable process”, Stochastic Processes and their Applications, 158 (2023), 361–376 | DOI | MR
[2] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.
[3] Vatutin V. A., Dyakonova E. E., Topchii V. A., “Kriticheskie protsessy Galtona–Vatsona so schetnym mnozhestvom tipov chastits i beskonechnymi vtorymi momentami”, Matem. sb., 212:1 (2021), 3–27 | MR
[4] Vatutin V. A., “Predelnye teoremy dlya kriticheskikh markovskikh vetvyaschikhsya protsessov s neskolkimi tipami chastits i beskonechnymi vtorymi momentami”, Matem. sb., 103(145):2(6) (1977), 253–264 | MR
[5] Zubkov A. M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatn. primen., 20:3 (1975), 614–623 | MR
[6] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79:1 (1977), 233–241 | DOI | MR