On the sets of the propagation criterion for strict majority Boolean functions
Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 62-70
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we investigate the propagation criterion for strict majority symmetric Boolean functions. With the use of the theory of Krawtchouk polynomials it is shown that vectors whose Hamming weight differs from $n/2$ by at most $1/2$ satisfy the propagation criterion for strict majority functions in $n$ variables, where $\lfloor n/2\rfloor$ is odd.
Keywords: Boolean function, symmetric Boolean function, strict majority Boolean function, Walsh spectrum.
Mots-clés : propagation criterion, Krawtchouk polynomial
@article{DM_2023_35_1_a3,
     author = {G. A. Isaev},
     title = {On the sets of the propagation criterion for strict majority {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {62--70},
     year = {2023},
     volume = {35},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_1_a3/}
}
TY  - JOUR
AU  - G. A. Isaev
TI  - On the sets of the propagation criterion for strict majority Boolean functions
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 62
EP  - 70
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_1_a3/
LA  - ru
ID  - DM_2023_35_1_a3
ER  - 
%0 Journal Article
%A G. A. Isaev
%T On the sets of the propagation criterion for strict majority Boolean functions
%J Diskretnaya Matematika
%D 2023
%P 62-70
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/DM_2023_35_1_a3/
%G ru
%F DM_2023_35_1_a3
G. A. Isaev. On the sets of the propagation criterion for strict majority Boolean functions. Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 62-70. http://geodesic.mathdoc.fr/item/DM_2023_35_1_a3/

[1] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Mnogochleny Kravchuka i ikh primeneniya v zadachakh kriptografii i teorii kodirovaniya”, Matem. vopr. kriptogr., 6:1 (2015), 33–56 | MR

[2] Kamlovskii O. V., “Summy modulei koeffitsientov Uolsha–Adamara nekotorykh sbalansirovannykh bulevykh funktsii”, Matem. vopr. kriptogr., 8:4 (2017), 75–98 | MR

[3] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012, 584 pp.

[4] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, 2020, 574 pp.

[5] Dalai D. K., Maitra S., Sarkar S., “Basic theory in construction of Boolean functions with maximum possible annihilator immunity”, Designs, Codes and Cryptography, 40 (2006), 41–58 | DOI | MR

[6] Feinsilver P., “Sums of squares of Krawtchouk polynomials, Catalan numbers, and some algebras over the Boolean lattice”, Int. J. Math. Comp. Sci., 12:1 (2017), 65–83 | MR

[7] Krawtchouk M., “Sur une généralisation des polynômes d'Hermite”, Comptes Rendus Math., 189 (1929), 620–622

[8] Preneel B., Van Leekwijck W., Van Linden L., Govaerts R., Vandewalle J., “Propagation characteristics of Boolean functions”, EUROCRYPT 1990, Lect. Notes Comput. Sci., 473, 1990, 161–173 | DOI | MR

[9] Rothaus O. S., “On “Bent” Functions”, J. Comb. Theory (A), 20:3 (1976), 300–305 | DOI | MR

[10] Titswort R. C., Correlation properties of cyclic sequences, Ph. D. dissertation, Calif. Inst. Technol., Pasadena, CA, 1962, 244 pp.