Boolean functions constructed using digital sequences of linear recurrences
Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 54-61
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of Boolean functions constructed from digital sequences of linear recurrences over the ring $\mathbb{Z}_{2^n}$ is considered. We investigate distances between functions, the cardinality of the class, nonlinearity and weights of functions. It is shown that this class consists of functions that are rather distant from the class of all affine functions.
Keywords: linear recurring sequences, Boolean functions, nonlinearity of Boolean functions.
@article{DM_2023_35_1_a2,
     author = {A. A. Gruba},
     title = {Boolean functions constructed using digital sequences of linear recurrences},
     journal = {Diskretnaya Matematika},
     pages = {54--61},
     year = {2023},
     volume = {35},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_1_a2/}
}
TY  - JOUR
AU  - A. A. Gruba
TI  - Boolean functions constructed using digital sequences of linear recurrences
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 54
EP  - 61
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_1_a2/
LA  - ru
ID  - DM_2023_35_1_a2
ER  - 
%0 Journal Article
%A A. A. Gruba
%T Boolean functions constructed using digital sequences of linear recurrences
%J Diskretnaya Matematika
%D 2023
%P 54-61
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/DM_2023_35_1_a2/
%G ru
%F DM_2023_35_1_a2
A. A. Gruba. Boolean functions constructed using digital sequences of linear recurrences. Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 54-61. http://geodesic.mathdoc.fr/item/DM_2023_35_1_a2/

[1] Lidl R., Nidderaiter G., Konechnye polya, v. 1,2, Mir, M., 1988, 822 pp.

[2] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sbornik, 183:3 (1993), 21–56

[3] Bylkov D. N., Kamlovskii O. V., “Parametry bulevykh funktsii, postroennykh s ispolzovaniem starshikh koordinatnykh posledovatelnostei lineinykh rekurrent”, Matem. vopr. kriptogr., 3:4 (2012), 25–53

[4] Bylkov D. N., “Ob odnom klasse bulevykh funktsii, postroennykh s ispolzovaniem starshikh razryadnykh posledovatelnostei lineinykh rekurrent”, PDM. Prilozhenie, 2014, no. 7, 59–60

[5] Bugrov A. D., Kamlovskii O. V., “Parametry odnogo klassa lineinykh funktsii, zadannykh na konechnom pole”, Matem. vopr. kriptogr., 9:4 (2018), 35–52 | MR

[6] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2000), 99–113

[7] Kamlovskii O. V., “Spektralnyi metod otsenki chisla reshenii sistem nelineinykh uravnenii s lineinymi rekurrentnymi argumentami”, Diskretnaya matematika, 28:2 (2016), 27–43

[8] Kamlovskii O. V., “Metod trigonometricheskikh summ dlya issledovaniya chastot $r$-gramm v starshikh koordinatnykh posledovatelnostyakh lineinykh rekurrent nad koltsom $\mathbb{Z}_{2^n}$”, Matem. vopr. kriptogr., 1:4 (2010), 33–62

[9] Kamlovskii O. V., Kuzmin A. S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundament. i prikl. matem., 6:4 (2000), 1083–1094 | MR

[10] Slovar kriptograficheskikh terminov, eds. Pogorelov B. A., Sachkov V. N., MTsNMO, M., 2006, 92 pp.

[11] Bylkov D. N., “Klass uslozhnenii lineinykh rekurrent nad koltsom Galua, ne privodyaschii k potere informatsii”, Problemy peredachi informatsii, 46:3 (2010), 51–59 | MR

[12] Kamlovskii O. V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. sbornik, 200:4 (2009), 31–52 | MR

[13] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp.