Generation of $n$-quasigroups by proper families of functions
Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 35-53
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finite quasigroups and $n$-quasigroups are a promising platform for cryptoalgorithm implementation. One of the key problems consists in memory-efficient generation of wide classes of $n$-quasigroups of a large order. We describe a possible solution based on proper families of functions, show that the number of $n$-quasigroups generated thereby is bounded from below in terms of the cardinality of the image of the corresponding proper family, study possible values that this cardinality can take, and give two examples of quadratic proper families of Boolean functions with a high image cardinality.
Mots-clés : quasigroup, $n$-quasigroup
Keywords: proper family of functions.
@article{DM_2023_35_1_a1,
     author = {A. V. Galatenko and V. A. Nosov and A. E. Pankratiev and K. D. Tsaregorodtsev},
     title = {Generation of $n$-quasigroups by proper families of functions},
     journal = {Diskretnaya Matematika},
     pages = {35--53},
     year = {2023},
     volume = {35},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_1_a1/}
}
TY  - JOUR
AU  - A. V. Galatenko
AU  - V. A. Nosov
AU  - A. E. Pankratiev
AU  - K. D. Tsaregorodtsev
TI  - Generation of $n$-quasigroups by proper families of functions
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 35
EP  - 53
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_1_a1/
LA  - ru
ID  - DM_2023_35_1_a1
ER  - 
%0 Journal Article
%A A. V. Galatenko
%A V. A. Nosov
%A A. E. Pankratiev
%A K. D. Tsaregorodtsev
%T Generation of $n$-quasigroups by proper families of functions
%J Diskretnaya Matematika
%D 2023
%P 35-53
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/DM_2023_35_1_a1/
%G ru
%F DM_2023_35_1_a1
A. V. Galatenko; V. A. Nosov; A. E. Pankratiev; K. D. Tsaregorodtsev. Generation of $n$-quasigroups by proper families of functions. Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/DM_2023_35_1_a1/

[1] Glukhov M. M., “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2(2), 28–32

[2] Shcherbacov V. A., “Quasigroups in cryptology”, Computer Science J. Moldova, 17:2(50) (2009), 193–228 | MR

[3] Chauhan D., Gupta I., Verma R., “Quasigroups and their applications in cryptography”, Cryptologia, 45:3 (2021), 227–265 | DOI

[4] Markovski S., Mileva A., “NaSHA — family of cryptographic hash functions”, The First SHA-3 Candidate Conference (Leuven, Belgium), 2009

[5] Gligoroski D., Ødegård R. S., Mihova M., Knapskog S. J., Drápal A., Klima V., Amundse J., El-Hadedy M., “Cryptographic hash function EDON-R'”, Proc. 1st Int. Workshop Security and Communic. Networks, IWSCN, 2009, 1–9

[6] Gligoroski D., Mihajloska H., Otte D., El-Hadedy M., GAGE and InGAGE http://gageingage.org/upload/GAGEandInGAGEv1.03.pdf

[7] Xu M., Tian Z., “An image cipher based on Latin cubes”, Proc. 3rd Int. Conf. Inf. Computer Technol., 2020, 160–168

[8] Dömösi P., Horváth G., “A novel cryptosystem based on abstract automata and Latin cubes”, Stud. Sci. Math. Hungar., 52:2 (2015), 221–232 | MR

[9] Markovski S., Mileva A., “Generating huge quasigroups from small non-linear bijections via extended Feistel function”, Quasigroups and Relat. Syst., 17:1 (2009), 97–106 | MR

[10] Nosov V. A., “Kriterii regulyarnosti bulevskogo neavtonomnogo avtomata s razdelennym vkhodom”, Intellekt. sistemy, 3, no. 3–4, 1998, 269–280

[11] Nosov V. A., “Postroenie klassov latinskikh kvadratov v bulevoi baze dannykh”, Intellekt. sistemy, 4, no. 3–4, 1999, 307–320

[12] Nosov V. A., Pankratiev A. E., “Latin squares over Abelian groups”, J. Math. Sci., 149:3 (2008), 1230–1234 | DOI | MR

[13] Galatenko A. V., Nosov V. A., Pankratiev A. E., “Latin squares over quasigroups”, Lobachevskii J. Math., 41:2 (2020), 194–203 | DOI | MR

[14] Plaksina I. A., “Postroenie parametricheskogo semeistva mnogomernykh latinskikh kvadratov”, Intellekt. sistemy, 18, no. 2, 2014, 323–329 | MR

[15] Chen Y., Gligoroski D., Knapskog S., “On a special class of multivariate quadratic quasigroups (MQQs)”, J. Math. Cryptology, 7:8 (2013), 111–144 | MR

[16] Lau D., Function Algebras on Finite Sets: A Basic Course on Many-valued Logic and Clone Theory, Springer, 2006, 684 pp. | MR

[17] Galatenko A. V., Nosov V. A., Pankratev A. E., “Porozhdenie kvadratichnykh kvazigrupp s pomoschyu pravilnykh semeistv bulevykh funktsii”, Fundam. prikl. matem., 23:2 (2020), 57–73 | MR

[18] Tsaregorodtsev K. D., “O svoistvakh pravilnykh semeistv bulevykh funktsii”, Diskretnaya matematika, 33:1 (2021), 91–102

[19] Krotov D. S., Potapov V. N., Sokolova P. V., “On reconstructing reducible $n$-ary quasigroups and switching subquasigroups”, Quasigroups and Relat. Syst., 16:1 (2008), 55–67 | MR

[20] Tsaregorodtsev K. D., “O vzaimno odnoznachnom sootvetstvii mezhdu pravilnymi semeistvami bulevykh funktsii i rebernymi orientatsiyami bulevykh kubov”, Prikl. diskr. matem., 2020, no. 48, 16–21 | MR

[21] Vajda S., Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, E. Horwood Ltd, 1989, 189 pp. | MR

[22] Zuev Yu. A., Po okeanu diskretnoi matematiki, v. 1, URSS, 2012, 274 pp.

[23] Galatenko A. V., Pankratiev A. E., Staroverov V. M., “Generation of proper families of functions”, Lobachevskii J. Math., 43:3 (2022), 571–581 | DOI | MR