On the linear disjunctive decomposition of a $p$-logic function into a sum of functions
Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 99-107
Let $p$ be a prime number, $p\ge 3$. We consider the set of decompositions of a $p$-logic function into a sum of functions with disjoint subsets of variables obtained by means of linear substitutions of arguments. Each decomposition of this kind is associated with a decomposition of the vector space into a direct sum of subspaces. We present conditions under which such space decomposition is unique up to rearrangement of subspaces.
Keywords:
$p$-logic function, disjunctive sum, linear transformation.
@article{DM_2022_34_4_a7,
author = {A. V. Cheremushkin},
title = {On the linear disjunctive decomposition of a $p$-logic function into a sum of functions},
journal = {Diskretnaya Matematika},
pages = {99--107},
year = {2022},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a7/}
}
A. V. Cheremushkin. On the linear disjunctive decomposition of a $p$-logic function into a sum of functions. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 99-107. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a7/
[1] Cheremushkin A. V., “O lineinoi razlozhimosti funktsii $p$-znachnoi logiki v proizvedenie funktsii”, Diskretnaya matematika, 33:4 (2020), 153–171 | MR
[2] Cheremushkin A. V., “Uslovie odnoznachnosti razlozheniya v summu funktsii pri lineinoi zamene peremennykh”, Prikladnaya diskretnaya matematika. Prilozhenie, 10 (2017), 55–56
[3] Cheremushkin A. V., “O lineinoi razlozhimosti dvoichnykh funktsii”, Prikladnaya diskretnaya matematika., 40:2 (2018), 10-22 | MR | Zbl
[4] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 8:2 (2010), 22–33 | Zbl