On the maximal size of tree in a random forest
Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 69-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Galton-Watson forests consisting of $N$ rooted trees and $n$ non-root vertices are considered. The distribution of the forest is determined by that of critical branching process with infinite variance and regularly varying tail of the progeny distribution. We prove limit theorem for the maximal size of a tree in a forest as $N,n \rightarrow \infty$ in such a way that $n/N \rightarrow \infty$. Our conditions are significantly wider than was previously known.
Keywords: Galton-Watson forest, tree size, vertex degree, limit theorems.
@article{DM_2022_34_4_a5,
     author = {Yu. L. Pavlov},
     title = {On the maximal size of tree in a random forest},
     journal = {Diskretnaya Matematika},
     pages = {69--83},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a5/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
TI  - On the maximal size of tree in a random forest
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 69
EP  - 83
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a5/
LA  - ru
ID  - DM_2022_34_4_a5
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%T On the maximal size of tree in a random forest
%J Diskretnaya Matematika
%D 2022
%P 69-83
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_4_a5/
%G ru
%F DM_2022_34_4_a5
Yu. L. Pavlov. On the maximal size of tree in a random forest. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 69-83. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a5/

[1] Pavlov Yu. L., “Maksimalnoe derevo sluchainogo lesa v konfiguratsionnom grafe”, Matem. sb., 212:9 (2021), 146–163 | MR | Zbl

[2] Pavlov Yu. L., Cheplyukova I. A., “Ob'emy derevev sluchainogo lesa i konfiguratsionnye grafy”, Trudy MIAN, 316 (2022), 298–315 | Zbl

[3] Hofstad R., Random Graphs and Complex Networks, v. 1, Cambridge University Press, Cambridge, 2017 ; v. 2, xvi+321 pp. https://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf | MR | Zbl

[4] Bollobas B., “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, Eur. J. Comb., 1:4 (1980), 311–316 | DOI | MR | Zbl

[5] Reittu H., Norros I., “On the power-law random graph model of massive data networks”, Performance Evalation, 55:1-2 (2004), 3–23 | DOI

[6] Pavlov Yu. L., Sluchainye lesa, Karelskii nauchnyi tsentr RAN, Petrozavodsk, 1996, 259 pp.

[7] Kazimirov N. I., Pavlov Yu. L., “Odno zamechanie o lesakh Galtona – Vatsona”, Diskretnaya matematika, 12:1 (2000), 47–59 | MR | Zbl

[8] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 207 pp.

[9] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp.

[10] Beitman G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965, 296 pp. | MR